perm filename V2INX.TEX[TEX,DEK] blob sn#524719 filedate 1980-07-26 generic text, type C, neo UTF8
COMMENT ⊗   VALID 00030 PAGES
C REC  PAGE   DESCRIPTION
C00001 00001
C00003 00002	\input acphdr
C00006 00003	\newletter % "A"
C00016 00004	\newletter % "B"
C00023 00005	\newletter % "C"
C00032 00006	\newletter % "D"
C00041 00007	\newletter % "E"
C00046 00008	\newletter % "F"
C00053 00009	\newletter % "G"
C00057 00010	\newletter % "H"
C00061 00011	\newletter % "I"
C00064 00012	\newletter % "J"
C00066 00013	\newletter % "K"
C00069 00014	\newletter % "L"
C00075 00015	\newletter % "M"
C00085 00016	\newletter % "N"
C00091 00017	\newletter % "O"
C00093 00018	\newletter % "P"
C00103 00019	\newletter % "Q"
C00105 00020	\newletter % "R"
C00114 00021	\newletter % "S"
C00124 00022	\newletter % "T"
C00130 00023	\newletter % "U"
C00132 00024	\newletter % "V"
C00134 00025	\newletter % "W"
C00137 00026	\newletter % "X"
C00138 00027	\newletter % "Y"
C00139 00028	\newletter % "Z"
C00140 00029	\newletter % numbers and symbols
C00141 00030	\endindex{Any accuracies or
C00152 ENDMK
C⊗;
\input acphdr
\font L←logos
\titlepage\setcount00
\null
\vfill
\tenpoint
\ctrline{Volume 2 of THE ART OF COMPUTER PROGRAMMING}
\ctrline{Index and Glossary}
\ctrline{$\copyright$ 1980 Addison--Wesley Publishing Company, Inc.}
\vfill
\runninglefthead{INDEX AND GLOSSARY}
\runningrighthead{INDEX AND GLOSSARY}
\section{}
\vsize 23pc\eject % eject the previous page
\acpmark{\chd}{\csec}
\setcount0 668
\input imacro
\beginindex
\titlepage\corners
\vskip 1in plus 30pt minus 10pt
\rjustline{\:;INDEX AND GLOSSARY}
\vskip 1cm plus 30pt minus 10pt
\quoteformat{Seek and ye shall find.\cr}
\author{Matthew 7:7}
\vskip 1cm plus 30pt minus 10pt
\noindent\eightpoint
\def\sum{\hbox{\:b\char6}}
When an index entry refers to a page containing a relevant exercise, see also
the {\sl answer} to that exercise for further information; an answer page is not
indexed here unless it refers to a topic not included in the statement of the
exercise.\par
\vskip 20pt plus 10pt minus 5pt
\hbox{}
\eject % this "page" is one of three that will actually be assembled here
% Since the author doesn't believe in completely automatic indexing, the
% index entries on the following pages were prepared by starting with the
% data on file v2inx.raw, sorting it, and then text-editing it while
% looking things up again (and improving the near-final pages at the same time)

\jpar 10000009 \chpar2←10000 \chpar17←10000 % ragged right margins, no hyphenations
\chpar8←1000000 \spaceskip .3333em plus 3em
\newletter % "A"
{\sl A priori\/} tests, 75.\\
Abacus, 180, 184.\\
Abramowitz, Milton, 41, 611.\\
Absolute error, 293--294.\\
Absorption laws, 636.\\
{\tt ACC}: Floating point accumulator, 202--203, 232--233.\\
Acceptance-rejection method, 120--123, 129, 134--135, 553.\\
Accuracy of floating point arithmetic, 206, 213--230, 237, 311--312, 420, 466--467.\\
Accuracy of random number generation, 26, 90--92, 103, 171.\\
Adaptation of coefficients, 471--479, 498--501.\\
Addition, 178, 191, 194, 197, 250--252, 262--263, 265--268.\¬
\*complex, 468.\¬
\*continued fractions, 602.\¬
\*floating point, 199--204, 209, 211--216, 219--230, 232--234, 237, 238--239, 249.\¬
\*fractions, 313--315.\¬
\*mixed-radix, 193, 266, 589.\¬
\*mod $m$, 11, 14--15, 171, 187, 271--272.\¬
\*modular, 269, 277.\¬
\*multiple-precision, 250--252, 262--263, 265--268.\¬
\*polynomial, 399--401.\¬
\*power series, 506.\\
Addition chains, 444--466, 501.\¬
\*ascending, 447.\¬
\*dual, 462, 466.\¬
\*$l↑0$-, 459--460, 464.\¬
\*star, 447, 453--457, 461, 463.\\
Addition-subtraction chains, 465.\\
Additive random number generation, 26--30, 36--37, 171--173.\\
Adleman, Leonard Max, 380, 386, 396.\\
Admissible numbers, 165.\\
Ahrens, Joachim Heinrich L\"udecke, 114, 124, 125, 128, 129, 131, 132, 133, 135, 136, 553.\\
Ahrens, Wilhelm Ernst Martin Georg, 192.\\
	\def\underdot#1{\save6\hbox{#1}\hbox to 1wd6{\hfil\lower.45ex\hbox{.}\hfil
	\hskip-1wd6\box6}}
al-B\A\i r\A un\A\i, ab\A u Ray\underdot han Mu\underdot hammad ibn A\underdot hmad, 441.\\
al-Kash\A\i, Jemsh\A\i d ibn Mes`\A ud, 182, 309,↔443.\\
al-Khw\A arizm\A \i, abu Ja`far Mu\underdot hammad ibn M\A us\A a, 181, 265.\\
al-Uql\A\i dis\A\i, abu al-\underdot Hasan, A\underdot hmad ibn Ibr\A ah\A\i m, 182, 265, 441.\\
Alanen, Jack David, 29.\\
Alekseev, Boris Vasil'evich, 112.\\
Algebra, free associative, 418--419.\\
Algebraic dependence, 499.\\
Algebraic integers, 380.\\
Algebraic number field, 314, 316, 632--633.\\
Algebraic system: A set of elements together with operations defined on them,
	{\sl see}↔Field, Ring, Unique factorization domain.\\
{\:M ALGOL}, 265.\\
Algorithms: Precise rules for transforming specified inputs into specified
	outputs in a finite number of steps.\¬
\*analysis of, 7--8, 73--74, 135, 140, 238--249, 262--263, 266--267, 278--280,
	285--289, 293--297, 300--301, 311, 330--364, 367--369, 383--386,
	397--398, 417, 420, 427--429, 436--441, 451, 481--482, 497, 503--505,
	511, 513--514,↔654.\¬
\*complexity of, 133, 265, 299, 301, 444--466, 475--479, 487--505.\¬
\*historical development of, 318--320, 441,↔443.\¬
\*proof of, 265, 266, 319--320.\\
Alias method, 115--116, 122, 134, 555.\\
Alt, Helmut, 647.\\
{\sl AMM: American Mathematical Monthly}, the official journal of the Mathematical
	Association of America, Inc.\\
Analysis of algorithms, 7--8, 73--74, 135, 140, 238--249, 262--263, 266--267, 278--280,
	285--289, 293--297, 300--301, 311, 330--364, 367--369, 383--386,
	397--398, 417, 420, 427--429, 436--441, 451, 481--482, 497, 503--505,
	511, 513--514, 654.\\
Analytical Engine, 185.\\
Ananthanarayanan, Kasi, 123.\\
{\tt AND} (logical and), 305, 312, 373--374, 434,↔617.\\
Anderson, Theodore Wilbur, 71.\\
Anderson, Stanley F., 296.\\
Antanairesis, 318--319, 362.\\
Apollonius of Perga, 209.\\
Apparition, rank of, 393.\\
Approximate equality, 208, 217--219, 228--229.\\
Approximately linear density, 120--121.\\
Approximation, by rational functions, 420, 515.\¬
\*by rational numbers, 314--316, 363--364.\\
Arabic mathematics, 181--182, 265, 309, 441, 443.\\
Arbitrary precision, 265, 268, 314.\\
Archibald, Raymond Clare, 185.\\
Arctangent, 297.\\
Arithmetic, 178--515, {\sl see}↔Addition, Comparison, Division, Doubling,
	Exponentiation, Greatest common divisor, Halving, Multiplication,
	Reciprocal, Square root, Subtraction.\¬
\*complex, 189--190, 212, 268, 292--294, 467--468, 482, 487, 497, 501, 641--642,↔647.\¬
\*floating point, 198--249, 443.\¬
\*fractions, 68, 313--316, 409, 506--507.\¬
\*fundamental theorem of, 317, 364, 464.\¬
\*mod $m$, 11--15, 171--172, 187, 271--272, 277, 443.\¬
\*modular, 268--278, 287--290, 431--441,↔486.\¬
\*multiple-precision, 250--301, 327--330,↔339.\¬
\*polynomial, 399--505.\¬
\*power series, 506--515.\¬
\*rational, 68, 313--316, 409, 506--507.\\
Arithmetic chains, 646.\\
Arrival time, 128.\\
Ashenhurst, Robert Lovett, 225, 227, 310.\\
Aspvall, Bengt Ingemar, vii.\\
Associative law, 214, 217, 224--225, 227, 229, 399, 636.\\
Asymptotic values: Functions that express the limiting behavior approached by
	numerical quantities, 57, 248, 398, 451--453, 506, 520  .\\
Atanasoff, John Vincent, 186.\\
Atrubin, Allan Joseph, 299.\\
Aurifeuille, L\'eon Fran\c cois Antoine, 376.\\
Automata (plural of Automaton), 295, 297--301, 311, 398.\\
Automorphic numbers, 278.\\
Avogadro, Amedeo, number, 198, 211, 223, 225--226.\\
Axioms for floating point arithmetic, 214--218, 227--229.\\
\newletter % "B"
$b\mskip 1mu$-ary number, 144.\\
$b\mskip 1mu$-ary sequence, 144--146, 164.\\
Babbage, Charles, 185.\\
Babenko, Konstantin Ivanovich, 350, 361.\\
Babington-Smith, Bernard, 2--3, 72--73.\\
Babylonian mathematics, 180, 209, 318.\\
Bachet, Claude Gaspard, sieur de M\'eziriac, 192.\\
Bachmann, Paul Gustav Heinrich, 605.\\
Bag, 636.\\
Baker, Kirby Alan, 300.\\
Balanced decimal number system, 195.\\
Balanced mixed-radix number system, 100,↔586.\\
Balanced ternary number system, 190--193, 211, 268, 336.\\
Ballantine, John Perry, 263.\\
Bareiss, Erwin Hans, 276, 416.\\
Barton, David Elliott, 72.\\
Base of representation, 179.\¬
\*floating point, 198, 210--211, 248.\\
Bauer, Friedrich Ludwig, 226--227, 310.\\
Baumgart, Bruce Guenther, 90.\\
Bays, John Carter, 32.\\
Beckenbach, Edwin Ford, 130.\\
Becker, Oskar Joachim, 342.\\
Belaga, Eduard Grigor'evich, 477.\\
Bell Telephone Laboratories Model V, 209.\\
Bellman, Richard Ernest, ix.\\
Benford, Frank, 240.\\
Bentley, Jon Louis, 136.\\
Berglund, Glenn David, 642.\\
Bergman, George Mark, 620.\\
Berlekamp, Elwyn Ralph, vi, 420, 423, 429, 436, 625.\\
Bernoulli, James (= Jakob = Jacques), 184.\¬
\*numbers, 661.\¬
\*sequences, 165.\\
Besicovitch, Abram Samoilovitch, 165.\\
Beta distribution, 129--131.\\
Beyer, William Aaron, 110.\\
Bharati Krishna Tirtharji Maharaja, Jagadguru Swami Sri, shankaracharya
	of↔Goverdhana Matha, 192.\\
Bienaym\'e, Ir\'en\'ee Jules, 72.\\
Bilinear forms, 487--496, 502--505.\\
Billingsley, Patrick Paul, 611.\\
Bin-packing problem, 550.\\
Binary basis, 196.\\
Binary-coded decimal, 186, 305, 311--312.\\
Binary computer: A computer that manipulates numbers primarily in the
	binary (radix 2) number system, 29--31, 186, 311, 322, 373--374, 617.\\
Binary-decimal conversion, 302--312.\\
Binary digit, 179, 184.\\
Binary gcd algorithms, 321--323, 330--339, 417.\\
Binary method for exponentiation, 441--444, 463--465.\\
Binary number systems, 179, 182--190, 193--197, 400, 441, 464.\\
Binary point, 179.\\
Binary search, 307.\\
Binary trees, 639.\\
Binet, Jacques Phillipe Marie, 605.\\
Bini, Dario, 482, 654--655.\\
Binomial distribution, 131--133, 136, 385,↔531.\¬
\*continuous, 553.\¬
\*negative, 135.\¬
\*tail, 160.\\
Binomial number system, 193.\\
Binomial theorem, 507.\\
Birnbaum, Zygmunt Wilhelm, 55.\\
{\sl BIT: Nordisk Tidskrift for Informations-\linebreak behandling}, a journal
	published by DATA A/S, Copenhagen, Denmark.\\
Bit: ``Binary digit,'' either zero or unity, 179, 184.\¬
\*random, 11, 29--31, 35--36, 45, 114--115,↔133.\\
Bit manipulation, {\sl see}↔Boolean operations.\\
Bj\"ork, Johan Harry, 229.\\
Bluestein, Leo I., 588.\\
Blum, Bruce Ivan, 265.\\
Blum, Fred, 415, 499.\\
Bofinger, Eve, 535.\\
Bofinger, Victor John, 535.\\
Bohlender, Gerd, 573.\\
Boolean operations, 29--31, 177, 186, 305, 311--312, 322, 373--374, 434,
	439, 617, 629, 637.\\
Border rank, 505.\\
Borel, \'Emile F\'elix \'Edouard Justin, 164.\\
Borodin, Allan Bertram, 479, 486, 496, 648.\\
Borosh, Itzhak, 104, 113, 276, 548.\\
Borrow, 252, 258, 266.\\
Bouyer, Martine, 268.\\
Bowden, Joseph, 185.\\
Box, George Edward Pelham, 117.\\
Boyer, Carl Benjamin, 182.\\
Bradley, Gordon Hoover, 325, 362.\\
Bramhall, Janet Natalie, 511.\\
Brauer, Alfred Theodor, 451, 459, 464.\\
Bray, Thomas Arthur, 123, 521.\\
Brent, Richard Peirce, vii, 7, 27, 125, 131, 134, 136, 226, 265, 297, 335, 338, 339,
	367, 371, 482, 510, 512--513, 515, 530, 584, 597, 608, 656, 657.\\
Bright, Herbert Samuel, 30.\\
Brillhart, John David, vi, 28, 378, 380, 384.\\
Brockett, Roger Ware, 652.\\
Brooks, Frederick Phillips, 210.\\
Brouwer, Luitzen Egbertus Jan, 166.\\
Brown, D. J. Spencer, 637.\\
Brown, George William, 130.\\
Brown, Mark Robbin, 652.\\
Brown, William Stanley, 401, 410, 420, 435,↔629.\\
Brute force, 596.\\
Buchholz, Werner, 186, 210.\\
Buckholtz, Thomas Joel, 661.\\
Bunch, James Raymond, 482.\\
Buneman, Oscar, 647.\\
Burks, Arthur Walter, 186.\\
\newletter % "C"
{\sl CACM: Communications of the ACM}, a publication of the Association for
	Computing Machinery, Inc.\\
Cahen, Eug\`ene, 621.\\
Calculating prodigies, 279.\\
Campbell, Sullivan Graham, 210.\\
Cancellation error, 230.\¬
\*avoiding, 574.\\
Cantor, David Geoffrey, 430--431.\\
Cantor, Georg, 193.\\
Capovani, Milvio, 482.\\
Caramuel Lobkowitz, Juan, 183.\\
Cards, playing, 139, 174.\\
Carlitz, Leonard, 79, 86.\\
Carmichael, Robert Daniel, 19.\¬
\*numbers, 609, 613.\\
Carr, John Weber, III, 210, 226, 227.\\
Carry, 189, 191, 232--234, 250--254, 258, 261--263, 265--266, 400, 450, 456.\\
Cassels, John William Scott, 105, 151.\\
Casting out nines, 273, 287, 307.\\
Catalan, Eug\`ene Charles, numbers, 639.\\
Cauchy, Augustin Louis, 192, 314, 506.\¬
\*inequality: $\biglp\sum a↓kb↓k\bigrp↑2≤
	\biglp\sum a↓k↑2\bigrp\biglp\sum b↓k↑2\bigrp$,\linebreak
	95, 216.\\
CDC 1604, 276.\\
Ceiling function, 77, 665.\\
Ces\`aro, Ernesto, 337.\\
Chain step, 475, 500--503.\\
Chaitin, Gregory John, 164, 166.\\
Chan, Tony Fan-Cheong [\chin2\chin3\chin4], 572.\\
Chapple, M. A., 511.\\
{\tt CHAR} (convert to characters), 311.\\
Characteristic, 199, {\sl see}↔Exponent part.\\
Characteristic polynomial, 480.\\
Charles XII of Sweden, 184.\\
Chartres, Bruce Aylwin, 227.\\
Chebotarev, Nikola\u\i\ Grigor'evich, 632.\\
Cheng, Russell Ch'uan Hsun [\chin5\chin6\chin7], 130.\\
Chhin Chiu Shao [\chin8\chin9\chin{10}], 271.\\
Chi-square distribution, 41, 45, 47, 65, 130.\¬
\*table, 41.\\
Chi-square test, 39--45, 50--54, 56--59.\\
Chinese mathematics, 181--182, 271.\\
Chinese remainder algorithm, 20, 274, 277, 289, 435--436, 486.\\
Chinese remainder theorem, 269--271, 373, 629.\¬
\*generalized, 276.\¬
\*for polynomials, 437 (exercise↔3), 486, 490--492.\\
Chirp transform, 588 (exercise↔8).\\
Choice, random, 2, 114--116, 122, 134.\\
Christiansen, Hanne Delgas, 72.\\
Church, Alonzo, 165.\\
Classical algorithms, 250--268.\\
Cochran, William Gemmell, 53.\\
Cocke, John, 212.\\
Coefficients of a polynomial, 399.\¬
\*adaptation of, 471--479, 498--501.\¬
\*size of, 401, 414, 432--433, 438--439.\\
Cohen, Daniel Isaac Aryeh, 579.\\
Cohn, Paul Moritz, 418, 620.\\
Colenne, Joseph D\'esir\'e, 185.\\
Collins, George Edwin, vi, 264, 265, 357, 401, 410, 434, 435, 441, 595, 622.\\
Collision test, 68--70, 72--73, 151.\\
Colson, John, 192.\\
Colton, Rev.\ Charles Caleb, vii.\\
Combination, random, 136--141.\\
Combination of random number generators, 31--33, 36--37.\\
Combinations with repetitions, 614.\\
Combinatorial matrix, 112.\\
Common divisors, 419, {\sl see↔also}↔Greatest common divisor.\\
Commutative law, 214, 316, 636, 639.\\
Commutative ring with identity, 399, 401,↔407.\\
{\sl Comp.\ J.: The Computer Journal}, published by the British Computer Society.\\
Companion matrix, 494.\\
Comparison: Testing for $<$, $=$, or $>$.\¬
\*continued fractions, 606.\¬
\*floating point, 208, 217--219, 224, 227--229.\¬
\*fractions, 315.\¬
\*mixed-radix, 274--275.\¬
\*modular, 274--275.\¬
\*multiple-precision, 266.\\
Complement notations for numbers, 14--15,↔186--187, 194, 197, 212, 261, 262, 264, 272.\\
Complete binary tree, 555.\\
Completely equidistributed sequence, 164.\\
Complex arithmetic, 189--190, 212, 268, 292--294, 467--468, 482, 487,
	497, 501, 641--642, 647.\\
Complex number representation, 189--190, 193--194, 196, 268, 401.\\
Complexity of calculation, 133, 265, 299, 301, 444--466, 475--479, 487--505.\\
Composition of power series, 514, 656.\\
Computability, 154--156, 164--166, 169.\\
Computational complexity, 133, 265, 299, 301, 444--466, 475--479, 487--505.\\
Congruential sequence, linear, 9--11.\¬
\*choice of increment, 10, 15, 21, 84--85, 93, 171.\¬
\*choice of modulus, 11--15, 170.\¬
\*choice of multiplier, 10, 15--25, 84--86, 98--105, 170--171.\¬
\*choice of seed, 15, 19, 137, 170.\¬
\*period length, 15--22.\¬
\*subsequence of, 10, 71.\\
Congruential sequence, quadratic, 25--26,↔34.\\
Conjugate of complex number, 642, 667.\\
Content of a polynomial, 405--406.\\
Context-free grammar, 636.\\
Continuant polynomials, 340--343, 358, 361--363, 420, 548, 604, 605, 607, 621.\\
Continued fractions, 339--340, 479, 500.\¬
\*infinite, 341, 358.\¬
\*quadratic irrationality, 342, 359, 380--382,↔398.\¬
\*regular, 330, 341--342, 352--353, 358--363.\¬
\*with polynomial quotients, 420, 479, 500.\\
Continuous binomial distribution, 553.\\
Continuous distribution function, 47, 51, 55, 58, 116--117, 576.\\
Continuous Poisson distribution, 552.\\
Convergents, 363, 380, 420.\\
Conversion of representations, 205, 208--209, 212, 237, 273--274, 277, 287--289,
	301, {\sl see↔also}↔Radix conversion.\\
Convolution, 290, 385, 535, 551.\¬
\*cyclic, 290--294, 300, 491--494, 502--503.\¬
\*multidimensional, 651.\¬
\*negacyclic, 503.\\
Conway, John Horton, 385.\\
Cook, Stephen Arthur, vi, 195, 280, 296, 301, 617, 648.\¬
\*multiplication algorithm, 280--285, 617.\\
Cooley, James William, 642.\\
Coolidge, Julian Lowell, 467.\\
Coonen, Jerome, 210.\\
Copeland, Arthur Herbert, 165.\\
Coppersmith, Don, 168, 169, 482.\\
Coroutine, 360, 610.\\
Correlation coefficient, 70--75, 78--85, 127.\\
Cosine, 231, 471.\\
Couffignal, Louis, 186.\\
Counting law, 636.\\
Coupon collector's test, 61--63, 74, 151, 167.\\
Covariance, 134.\\
Coveyou, Robert Reginald, 26, 34, 84, 88, 110, 527.\\
Cox, Albert George, 263.\\
Craps, 174.\\
CRAY-I, 391.\\
Cryptanalysis, 177, 386--389, 397, 486.\\
Cusick, Thomas William, 548.\\
Cycle in a sequence, 7--9, 21, 34--36.\¬
\*detection of, 4, 7--8.\\
Cyclic convolution, 290--294, 300, 491--494, 502--503.\\
Cyclotomic polynomials, 378, 432--433, 440, 492, 496.\\
\newletter % "D"
Dahl, Ole-Johan, 141.\\
Darling, Donald Allan, 56.\\
Datta, Bibhutibhusan, 441.\\
Davenport, Harold, 359.\\
Davis, Chandler, 564.\\
Davis, Clive Selwyn, 603.\\
de Bruijn, Nicolaas Govert, 196, 605, 614, 629, 636.\¬
\*cycle, 35--36.\\
de Groote, Hans Friedrich, 648.\\
de Jong, Lieuwe Sytse, 497.\\
de Jonqui\`eres, Adm.\ Jean Philippe Ernest de↔Fauque, 445, 449, 458.\\
de la Vall\'ee Poussin, Charles Louis Xavier Joseph, 366.\\
Debugging, 205--207, 260--261, 314, 656.\\
DEC 20, 14.\\
Decimal computer: A computer that manipulates numbers primarily in the
	decimal (radix ten) number system, 186.\\
Decimal digits, 179, 302.\\
Decimal fractions, 181--182.\\
Decimal number system, 181--183, 194--195,↔359.\\
Decimal point, 179, 182.\\
Decision, unbiased, 2, 114--116, 122, 134.\\
Decuple-precision floating point, 268.\\
Dedekind, Richard, 78.\¬
\*sum, 78--87, 104.\\
Definitely greater than, 208, 218, 228.\\
Definitely less than, 208, 218, 228.\\
Definition of randomness, 2, 142--169.\\
Degree of a polynomial, 399, 401, 418.\\
Degrees of freedom, 41--42, 476--477, 499--500.\\
Dekker, Theodorus Jozef, 227, 229, 237.\\
Dellac, H., 445.\\
Density function, 119--120, 134.\\
Dependence, 127, 134, {\sl see}↔Independence of random numbers.\¬
\*algebraic, 499.\¬
\*linear, 381, 423, 425--427, 610.\\
Derivative, 421, 470, 507, 631.\\
Descartes, Ren\'e, 391.\\
Determinant, 338, 358, 415, 416, 479--480, 482, 496.\\
Deviate: A random number.\\
Dewey, Melvil, notation for trees, 530.\\
Diaconis, Persi Warren, 248, 249, 578.\\
Diamond, Harold George, 230.\\
Dice, 2, 6, 39--42, 56, 115--116, 174.\\
Dickman, Karl, 367.\\
Dickson, Leonard Eugene, 271, 371, 376,↔598.\\
Dieter, Ulrich Otto, vii, 85, 87, 98, 110, 114, 124--125, 129, 132, 133, 553.\\
Differences, 281--282, 484--487, 498.\\
Differentiation, {\sl see}↔Derivative.\\
Diffie, Bailey Whitfield, 388.\\
Digit: One of the symbols used in positional notation; usually a decimal digit,
	one of the symbols 0, 1, $\ldotss$, or 9.\¬
\*binary, 179, 184.\¬
\*decimal, 179, 302.\¬
\*hexadecimal, 179, 185, 194.\¬
\*octal, 185, 194.\\
Dilogarithm, 578.\\
Diophantine equations, 326--327, 337, 359.\\
Direct product, 502, 504, 505.\\
Direct sum, 502, 504, 505.\\
Directed graph, 460--462, 466.\\
Dirichlet, Peter Gustav, Lejeune-, 637.\\
Discrepancy, 37, 105--110, 113.\\
Discrete distribution function, 45, 115--116, 131--141.\\
Discrete Fourier transform, 290--294, 300, 482--484, 487, 494, 497, 502--503.\\
Discriminant of a polynomial, 619, 628,↔632.\\
Distinct-degree factorization, 429--431, 439,↔632.\\
Distribution: A specification of probabilities that govern the value of
	a random variable, 2, 114, 116.\¬
\*beta, 129--131.\¬
\*binomial, 131--133, 136, 160, 385, 531,↔553.\¬
\*chi-square, 41, 45, 47, 65, 130.\¬
\*discrete, 45, 115--116, 131--141.\¬
\*exponential, 114, 128--133, 554.\¬
\*$F$-, 130.\¬
\*of floating point numbers, 238--249.\¬
\*gamma, 129--130, 135.\¬
\*geometric, 131, 132, 135, 535 (exercise 3), 549, 551.\¬
\*integer-valued, 131--135.\¬
\*Kolmogorov--\hskip .1em Smirnov, 48--49, 55--56, 58.\¬
\*of leading digits, 239--249.\¬
\*mixture, 118--119, 133--134.\¬
\*negative binomial, 135.\¬
\*normal, 54, 71, 117--127, 129, 130, 134--135, 368.\¬
\*partial quotients of continued fraction, 345--353, 615--616.\¬
\*Poisson, 53, 132--133, 135--136, 517.\¬
\*of prime factors, 367--369, 395.\¬
\*of prime numbers, 366--367, 396, 616, 632--633.\¬
\*Student's, 130.\¬
\*$t$-, 130.\¬
\*tail of binomial, 160.\¬
\*tail of normal, 122--123, 134.\¬
\*uniform, 2, 9, 45, 47, 55, 114, 116--120, 133, 248.\¬
\*variance-ratio, 130.\¬
\*wedge-shaped, 120--121.\\
Distribution functions, 45--47, 51, 116--117, 135, 241--242, 247, 345--346.\¬
\*continuous, 47, 51, 55, 58, 116--117, 576.\¬
\*discrete, 45, 115--116, 131--141.\¬
\*empirical, 47--50.\¬
\*mixture of, 118--119, 133--134.\¬
\*product of, 116--117.\\
Distributive laws, 215--216, 229, 317, 399,↔636.\\
Divide-and-correct, 255--260, 263--268.\\
Divided differences, 485, 498.\\
Dividend: The quantity $u$ while computing↔$u/v$.\\
Division, 178, 250--251, 255--260, 263--268, 295--297.\¬
\*complex, 212, 268, 647.\¬
\*continued fractions, 602.\¬
\*double-precision, 235--237.\¬
\*floating point, 204--205, 208, 212, 215, 224, 226, 228--230, 235--237, 248, 577.\¬
\*fractions, 313, 315.\¬
\*long, 255--260, 263--268.\¬
\*mixed-radix, 193, 589.\¬
\*mod $m$, 25 (exercise↔7), 277, 337, 427--428, 480.\¬
\*modular, 277.\¬
\*multiple-precision, 255--261, 263--268, 295--297.\¬
\*polynomial, 401--420, 468--469, 515.\¬
\*power series, 506--507, 514--515.\¬
\*pseudo-, 407--409, 416, 418.\¬
\*string polynomials, 418.\¬
\*synthetic, 402.\\
Divisor: The quantity $v$ while computing↔$u/v$; or, we say $x$ is a divisor
	of↔$y$ if $y\mod x=0$; it is a {\sl proper} divisor if it is
	a divisor such that $1<x<y$.\¬
\*polynomial, 403.\\
Dixon, John Douglas, 356, 385, 395, 397.\\
Dixon, Wilfrid Joseph, 71.\\
Dobell, Alan Rodney, 16.\\
Dobkin, David Paul, 638, 652.\\
Donsker, Monroe David, 532.\\
Doob, Joseph Leo, 532.\\
Dorn, William Schroeder, 469.\\
Double-precision arithmetic, 230--237, 263--264, 278--279.\\
Doubling, 305, 360, 443.\\
Doubling step, 447.\\
Downey, Peter James, 466.\\
Dragon curve, 564, 566, 607.\\
Dresden, Arnold, 180.\\
Drift, 221--222, 229--230.\\
Dual of an addition chain, 462, 466, 639.\\
Duncan, Robert Lee, 249.\\
Duodecimal number system, 183.\\
Dupr\'e, Athanase, 605.\\
Durbin, James, 54.\\
Durham, Stephen Daniel, 32.\\
Durstenfeld, Richard, 140.\\
\newletter % "E"
$e$, 11, 73, 342, 360, 659--660, 666.\\
Earle, John Goodell, 296.\\
Easton, Malcolm Coleman, 555.\\
EDVAC, 210.\\
Effective algorithms, 154--156, 164--166, 169.\\
Egyptian mathematics, 318, 443.\\
Eisenstein, Ferdinand Gotthold, 438.\\
Electrologica X8, 206.\\
Ellipse, random point on, 130--131, 136.\\
Ellipse, volume of, 101.\\
Empirical distribution function, 47--50.\\
Empirical tests for randomness, 59--75.\\
Encoding a permutation, 64, 75, 139.\\
Encoding secret messages, 177, 386--389, 397, 486.\\
Engineering Research Associates, 192.\\
ENIAC, 52.\\
Enison, Richard Lawrence, 30.\\
Enumeration of tree structures, 639.\\
Equality, approximate, 208, 217--219, 228--229.\\
Equidistributed sequence, 143--145, 157, 166--169.\\
Equidistribution test, 59, 72.\\
Equivalent addition chains, 461, 466.\\
Eratosthenes, sieve of, 394.\\
Erd\H os, P\'al (= Paul), 369, 451, 638.\\
ERH, {\sl see}↔GRH.\\
ERNIE, 3.\\
Error, relative, 206, 213, 216--217, 237, 240.\\
Error estimation, 206, 213, 216--217, 237, 240, 293--294.\\
Essential equality, 218--219, 228--229.\\
Estrin, Gerald, 469.\\
Euclides (= Euclid), 318--320.\\
Euclid's algorithm, 81--83, 113, 272, 289, 317--320, 323--324, 338--339, 544.\¬
\*analysis of, 339--364, 605.\¬
\*extended, 325, 337, 417, 515.\¬
\*for polynomials, 405--420, 515.\¬
\*for string polynomials, 419.\¬
\*multiple-precision, 327--330.\\
Eudoxus of Cnidus, 318, 342.\\
Euler, Leonhard, 340, 360, 361, 391, 602.\¬
\*constant $\gamma$, 342, 360, 611, 629, 659--660,↔666.\¬
\*theorem, 19, 270, 273, 523.\¬
\*totient function $\varphi(n)$, 19, 273, 353--354, 361, 548, 666.\\
Evaluation: Computing the value.\¬
\*of determinants, 416, 479--480, 482.\¬
\*of mean and standard deviation, 216,↔229.\¬
\*of monomials, 465--466.\¬
\*of polynomials, 466--505, 588 (exercise↔8).\¬
\*of powers, 441--466.\\
Eve, James, 474, 499.\\
Eventually periodic sequence, 7--8, 21, 359, 369--371.\\
Excess $q$ exponent, 198--199, 211, 231.\\
Exclusive or, 29--31, 177, 400.\\
Exercises, notes on, ix--xi.\\
Exhaustive search, 99--100.\\
Exponent overflow, 201, 203, 206, 211, 216, 227--228, 233.\\
Exponent part of a floating point number, 198--199, 231, 248, 268.\\
Exponent underflow, 201, 203, 206, 211, 216, 227--228, 233.\\
Exponential deviate, generating, 128.\\
Exponential distribution, 114, 128--133,↔554.\\
Exponential function, 297, 471, 514.\\
Exponential sums, 79--81, 105--109, 113, 168, 366.\\
Exponentiation: Raising to a power, 441--466, 507, 656.\\
Extended arithmetic, 230, 593.\\
Extended Euclidean algorithm, 325, 337, 417, 515.\\
\newletter % "F"
$F$-distribution, 130.\\
Factor method of exponentiation, 443, 445, 462--463, 466.\\
Factorial number system, 64, 192.\\
Factorial power, 281--282, 497, 597, 664.\\
Factorization: Discovering factors.\¬
\*of integers, 12--13, 317, 353, 364--398,↔464.\¬
\*of polynomials, 420--441.\¬
\*uniqueness of, 403--404, 417.\\
{\tt FADD} (floating add), 208, 209, 211, 498.\\
Fan, Chung Teh [\chin{11}\chin{12}\chin{13}], 137.\\
Farmwald, Paul Michael, 190.\\
Fast Fourier transform, 71, 290--294, 300, 483--484, 486, 494, 497, 651, 653.\\
Fateman, Richard J, 443.\\
{\tt FCMP} (floating compare), 208, 229.\\
{\tt FDIV} (floating divide), 208.\\
Fermat, Pierre de, 371--372, 375, 391, 544.\¬
\*numbers, 13, 371, 375, 380.\¬
\*theorem, 375, 394, 421.\\
FFT, {\sl see}↔Fast Fourier transform.\\
Fibonacci, Leonardo, of Pisa, 181, 192, 265.\¬
\*number system, 193.\¬
\*numbers: elements of the Fibonacci sequence, 664.\¬
\*numbers, table, 661.\¬
\*sequence, 26, 28, 33, 34, 44, 50, 52, 88, 343, 172, 448, 464, 568, 611, 616.\\
Field: An algebraic system admitting addition, subtraction, multiplication,
	and division, 197, 314, 401--403, 487,↔506.\¬
\*finite, 28, 438, 529, 630, 643.\\
Fike, Charles Theodore, 472.\\
Finite Fourier transform, {\sl see}↔Discrete Fourier transform.\\
Finite sequence, random, 145, 161--164.\\
Fischer, Michael John, vii, 301.\\
Fischer, Patrick Carl, 226.\\
{\tt FIX}, 208.\\
Fix-to-float conversion, 205, 208.\\
Fixed point arithmetic, 193, 198, 292--294.\\
Fixed slash, 314--315, 363--364.\\
Flat distribution, {\sl see}↔Uniform distribution.\\
Flehinger, Betty Jeanne, 247.\\
Fletcher, William, 654.\\
Float-to-fix conversion, 208, 209, 212.\\
Floating binary numbers, 198, 210--212, 238--239, 248.\\
Floating decimal numbers, 198, 210--211, 238--239.\\
Floating hexadecimal numbers, 238--239, 248.\\
Floating point arithmetic, 33, 172, 180, 198--249, 276, 314, 530.\¬
\*accuracy of, 206, 213--230, 237, 311--312, 420, 466--467.\¬
\*addition, 199--204, 209, 211--216, 219--230, 232--234, 237, 238--239, 249.\¬
\*axioms, 214--218, 227--229.\¬
\*comparison, 208, 217--219, 224, 227--229.\¬
\*decuple-precision, 268.\¬
\*division, 204--205, 208, 212, 215, 224, 226, 228--230, 235--237, 248, 577.\¬
\*double-precision, 230--237, 263--264.\¬
\*interval, 212, 225--227, 230, 570.\¬
\*mod, 212, 228.\¬
\*multiplication, 204, 207, 208, 215--216, 224, 226--230, 234--235, 237, 248--249.\¬
\*operators of \MIX, 208, 211, 498.\¬
\*reciprocal, 228, 248.\¬
\*remainder, 212, 228.\¬
\*single-precision, 198--213.\¬
\*subtraction, 200--204, 214--216, 219--225, 230, 232--234, 238--239, 249.\¬
\*summation, 216, 229.\¬
\*triple-precision, 237.\¬
\*unnormalized, 223--225, 227, 229, 310.\\
Floating point numbers, 180, 198--199, 206, 223, 225, 231.\¬
\*radix $b$, excess $q$, 198--199.\¬
\*statistical distribution, 238--249.\\
Floating point radix conversion, 309--312.\\
Floating point trigonometric subroutines, 231, 471.\\
Floating slash, 314--316, 363.\\
Floor function, 77, 665.\\
{\tt FLOT} (float), 208.\\
Floyd, Robert W, 7, 265, 344, 487.\\
{\tt FMUL} (floating multiply), 208, 498.\\
Forsythe, George Elmer, 4, 124.\\
{\:M FORTRAN}, 171--172, 265.\\
Fourier, Jean Baptiste Joseph, 264.\¬
\*division method, 264.\¬
\*series, 86, 467--468.\¬
\*transform, discrete, 290--294, 300, 482--484, 487, 494, 497, 502--503.\\
Fraction overflow, 201, 239, 249.\\
Fraction part of a floating point number, 198--199, 206, 223--225, 231, 239--249.\\
Fractions: Numbers in $[0,1)$.\¬
\*conversion, 302--311.\¬
\*decimal, 181--182.\¬
\*exponentiation, 464.\¬
\*terminating, 311.\\
Fractions: Rational numbers, 313, 401.\¬
\*arithmetic on, 68, 313--316, 409, 506--507.\\
Fraenkel, Aviezri S, 274, 276, 585.\\
Franel, J\'erome, 243.\\
Franklin, Joel Nick, 142, 152, 153, 164, 167, 168, 542.\\
Franta, William Ray, 58.\\
Free associative algebra, 418--419.\\
Frequency function, {\sl see}↔Density function.\\
Frequency test, 59, 72.\\
Friedland, Paul, 570.\\
Frobenius, Ferdinand Georg, 625, 632.\\
{\tt FSUB} (floating subtract), 208.\\
Fundamental theorem of arithmetic, 317, 364, 464.\\
\newletter % "G"
Galambos, J\'anos, 611.\\
Galois, Evariste, field, {\sl see}↔Finite field.\¬
\*group of a polynomial, 625, 632.\\
Gambling system, 155.\\
Gamma distribution, 129--130, 135.\\
Gamma function, incomplete, 54, 58, 129.\\
Gap test, 60--61, 72--73, 131, 151, 167.\\
Gardner, Martin, 38, 184.\\
Garner, Harvey Louis, 265, 274, 276.\\
Gauss, Karl (= Carl) Friedrich, 346, 398, 404, 543, 631.\¬
\*lemma about polynomials, 404, 626.\\
Gaussian integers, 544.\\
Gay, John, 1.\\
gcd: Greatest common divisor.\\
Gebhardt, Friedrich, 33.\\
Gehrhardt, Karl Immanuel, 184.\\
Geiringer, Hilda, von Mises, 73.\\
Gel'fond, Aleksandr Osipovich, 627.\\
Generalized Riemann hypothesis, 380, 632.\\
Generating functions, 135, 140, 246--247, 262--263, 333, 506, 535, 551, 568, 623,
	624, 629, 636--637.\\
Generating uniform deviates, 9--37, 170--173.\\
Geometric distribution, 131, 132, 135, 535 (exercise↔3), 549, 551.\\
Geometric series, 79, 291, 501, 641.\\
Gibb, Allan, 227.\\
Gill, Stanley, 210.\\
Gioia, Anthony Alfred, 449.\\
Girard, Albert, 405.\\
Givens, James Wallace, Jr., 90.\\
Glaser, Anton, 185.\\
Globally nonrandom behavior, 49--51, 75.\\
Goertzel, Gerald, 468.\\
Goldschmidt, Robert E, 296.\\
Goldstine, Herman Heine, 186, 263, 310.\\
Golomb, Solomon Wolf, 141, 430, 611, 652.\\
Gon\c calves, {\sl see}↔Vicente Gon\c calves.\\
Gonzalez, Teofilo, 58.\\
Good, Irving John, 60, 169.\\
Gosper, Ralph William, Jr., vii, 98, 104, 112, 190, 339, 360, 363, 518, 602.\\
Gosset, William Sealy (= Student), distribution, 130.\\
Goulard, A., 458.\\
Gradual underflow, 206.\\
Graham, Ronald Lewis, 465, 565.\\
Graph, 460--462, 466.\\
Gray, Frank, code, 193, 640.\\
Gray, Herbert L., 227.\\
Greater than, definitely, 208, 218--219, 227--228.\\
Greatest common divisor, 316--339, 464.\¬
\*binary algorithm for, 321--323, 330--339,↔417.\¬
\*Euclidean algorithm for, {\sl see}↔Euclid's algorithm.\¬
\*multiple-precision, 327--330, 339.\¬
\*of $n$ numbers, 323--324, 362, 364.\¬
\*of polynomials, 405--420, 434--436, 440.\¬
\*in unique factorization domain, 405.\\
Greatest common right divisor, 419.\\
Greek mathematics, 180--181, 318--320, 342.\\
Green, Bert F., 26.\\
Greenberger, Martin, 16, 84, 525.\\
Greenwood, Robert Ewing, 72.\\
GRH, {\sl see}↔Generalized Reimann hypothesis.\\
Grosswald, Emil, 86.\\
Grube, Andreas, 547.\\
Gr\"unwald, Vittorio, 188, 189.\\
Guilloud, Jean, 268.\\
Gustavson, Fred Gehrung, 657.\\
Guy, Richard Kenneth, 385, 396.\\
\newletter % "H"
Hadamard, Jacques Salomon, inequality, 414, 418, 480.\\
Halberstam, Heini, 614.\\
Hales, Alfred Washington, 430.\\
Halton, John Henry, 157.\\
Halving, 277, 311, 321--322, 360, 443.\\
Hamblin, Charles Leonard, 401.\\
Hamlet, prince of Denmark, v.\\
Hammersley, John Michael, 173.\\
Hamming, Richard Wesley, 240, 248.\\
Handscomb, David Christopher, 173.\\
Hansen, Eldon Robert, 574.\\
Hansen, Walter, 453, 455, 457, 459--460, 464.\\
Hanson, Richard Joseph, 573.\\
Hardware: Computer circuitry.\¬
\*algorithms suitable for, 212 (exercise↔15), 229 (exercise↔17), 265--267,
	276, 296--299, 305, 310--312, 320--321, 441--442, 637.\\
Hardy, Godfrey Harold, 366, 369, 606.\\
Harmonic numbers, 661--662, 664.\\
Harmonic probability, 249.\\
Harmuth, Henning Friedolf, 483.\\
Harriot, Thomas, 183.\\
Harris, Bernard, 519.\\
Harris, Vincent Crockett, 323, 339.\\
Harrison, Charles, Jr., 227.\\
Harrison, Michael Alexander, iv.\\
Hashing, 68, 555.\\
Haynes, Charles Edmund, Jr., 104.\\
Hebb, Kevin Ralph, 458.\\
Heilbronn, Hans Arnold, 356--357, 362.\\
Heindel, Lee Edward, 622.\\
Hellman, Martin Edward, 388.\\
Henrici, Peter, 315, 507.\\
Hensel, Kurt Wilhelm Sebastian, 433, 628.\¬
\*lemma, 35, 439.\\
Hermite, Charles, 111.\\
Herzog, Thomas Nelson, 166, 558.\\
Hexadecimal digits, 179, 185, 194.\\
Hexadecimal number system, 179, 184--185, 593.\¬
\*floating point, 238--239, 248.\¬
\*nomenclature for, 185.\\
Hickerson, Dean Robert, 384.\\
Hindu mathematics, 181, 265.\\
Hitchcock, Frank Lauren, 488.\\
Hlawka, Edmund, 113.\\
Hoaglin, David Caster, vii.\\
Hoare, Charles Antony Richard, 642.\\
Homogeneous polynomial, 418, 640.\\
Hopcroft, John Edward, 482, 489, 641.\\
Horner, William George, 467, 470.\¬
\*rule for polynomial evaluation, 467--469, 479, 485, 496, 499, 501.\\
Horowitz, Ellis, 486.\\
Howard, John Vernon, 165.\\
Howe, Marion Elaine, vii.\\
Howell, Thomas David, 648.\\
Huff, Darrell, 39.\\
Hull, Thomas Edward, 16.\\
Hurwitz, Adolf, 360, 603.\\
Hyde, John Porter, 401.\\
\newletter % "I"
IBM 360/91, 380.\\
IBM System/370, 14--15.\\
Idempotent, 517, 636.\\
Identity, commutative ring with, 399, 401, 407.\\
Iff: If and only if.\\
Ikebe, Yasuhiko, 237.\\
Imaginery radix, 189, 193--194, 268.\\
Improving randomness, 25, 31--34, 37.\\
Inclusion and exclusion principle, 337, 536, 567, 593, 623, 640.\\
Incomplete gamma function, 54, 58, 129.\\
Increment in a linear congruential sequence, 9--10, 15, 21, 84--85, 93, 171.\\
Independence, algebraic, 499.\\
Independence, linear, 381, 423, 425--427, 610.\\
Independence of random numbers, 2, 40, 43--44, 50, 53, 57, 91, 225, 532.\\
Indian mathematics, 181, 192, 265.\\
Induction, mathematical, 319.\¬
\*on the course of computation, 251, 254, 265--266, 320.\\
Infinite continued fraction, 341, 358.\\
Infinity, representation of, 209, 230, 315,↔593.\\
Infinity lemma, 564.\\
Inner product, 95, 481, 502 (exercise↔50).\\
Integrated circuit module, 297.\\
Integer, random,\⊗
\*among all positive integers, 143, 242, 249, 439, 453.\¬
\*in a bounded set, 114--115, 171.\\
Integer solution to equations, 326--327, 337, 359.\\
Integer-valued distribution, 131--135.\\
Integration, 146--147, 154, 244.\\
Interpolation, 281--282, 348, 484--486, 490, 492, 498, 641, 657.\\
Interpretive routine, 210.\\
Interval arithmetic, 212, 225--227, 230, 570.\\
Inverse Fourier transform, 291, 588, 641.\\
Inverse function, 116, 128, 656, {\sl see↔also}↔Reversion.\\
Inverse modulo $m$, 25, 277, 337, 437.\\
Inverse of a matrix, 95--96, 314, 482, 657.\\
Irrational radix, 193.\\
Irrationality, quadratic, 342, 359, 380--382,↔398.\\
Irreducible polynomial, 403, 417, 421, 437--441.\\
Ishibashi, Yoshihiro [\chin{17}\chin{18}\chin{19}\chin{20}], 275.\\
Iteration of series, 511--513, 515.\\
\t Iur'ev, Serge\u\i\ Petrovich, 350.\\
Iverson, Kenneth Eugene, 210.\\
\newletter % "J"
{\sl JACM: Journal of the ACM}, a publication of the Association for
	Computing Machinery, Inc.\\
Jacobi, Carl Gustav Jacob, symbol, 396--397.\\
{\tt JAE} (jump A even), 322, 462.\\
Ja'Ja', Joseph, 496.\\
Janssens, Frank, 104, 110.\\
Jansson, Birger, 518, 527.\\
{\tt JAO} (jump A odd), 322.\\
Jefferson, Thomas, 213.\\
Jeremiah, 515.\\
J\"ohnk, Max Detlev, 130.\\
Johnson, Samuel, 213.\\
Jones, Rev.\ Hugh, 184, 309.\\
Jones, Terence Gordon, 137.\\
Jordaine, Joshua, 183.\\
Judd, John Stephen, 378.\\
Jurkat, Wolfgang Bernhard, 641.\\
{\tt JXE} (jump X even), 322.\\
{\tt JXO} (jump X odd), 203, 322.\\
\newletter % "K"
$k$-distributed sequence, 144--149, 162, 164, 166--168.\\
Kac, Mark, 369.\\
Kahan, William M., vii, 206, 210, 211, 226, 227, 228, 229, 230, 571, 574.\\
Kanner, Herbert, 310.\\
Karatsuba, Anatoli\u\i\ Alekseevich, 279, 401.\\
Keir, Roy Alex, 592.\\
Kempner, Aubrey John, 188, 363.\\
Kendall, Maurice George, 2--3, 72--73.\\
Kermack, William Ogilvy, 72.\\
Kerr, Leslie Robert, 641.\\
Kesner, Oliver, 210.\\
Khinchin, Aleksandr \t Iakovlevich, 339, 604.\\
Kinderman, Albert John, 125--126.\\
Klarner, David Anthony, 197.\\
Klem, Laura, 26.\\
Knop, Robert Edward, 131.\\
Knopp, Konrad, 347.\\
Knuth, Donald Ervin [\chin{14}\chin{13}\chin{15}], ii, vi--vii, 4,↔29, 85,
	133, 152, 180, 189, 210, 227,
	318, 357, 362, 369, 472, 561, 564, 611, 661, 689.\\
Knuth, John Martin, xiv.\\
Knuth, Jennifer Sierra, xiv.\\
Kohavi, Zvi, 479.\\
Kolmogorov, Andre\u\i\ Nikolaevich, 54, 163, 165, 166, 169.\\
Kolmogorov--\hskip .1em Smirnov distribution, table, 48.\\
Kolmogorov--\hskip .1em Smirnov test, 45--52, 54--58, 59, 68.\\
Konheim, Alan Gustave, 247.\\
K\"onig, Hermann, 642.\\
Koons, Florence, 310.\\
Kornerup, Peter, 315--316.\\
Korobov, Nikola\u\i\ Mikha\u\i lovich, 110, 152,↔164.\\
Kraitchik, Maurice Borisovich, 380, 391.\\
Krishnamurthy, Edayathumangalam Venkataraman, 264.\\
Kronecker, Leopold, 431, 605, 623, 631,↔663.\\
Kruskal, Martin David, 520.\\
KS test, {\sl see}↔Kolmogorov--\hskip .1em Smirnov test.\\
Kuipers, Lauwerens, 110, 164.\\
Kung, Hsiang Tsung [\chin{21}\chin{22}\chin{23}], 510, 514,↔657.\\
Kuz'min, Rodion Osievich, 346.\\
\newletter % "L"
La Touche, Mrs., 178, 214.\\
Laderman, Julian David, 641.\\
Lafon, Jean-Claude, 641.\\
Lagrange, Joseph Louis, comte, 359, 363, 437, 508.\¬
\*identity: $\biglp\sum a↓kb↓k\bigrp↑2=$\linebreak
	$\biglp\sum a↓k↑2\bigrp\biglp\sum b↓k↑2\bigrp
	-\sum(a↓kb↓j-a↓jb↓k)↑2$, 536.\¬
\*interpolation polynomial, 484.\¬
\*inversion formula, 508.\\
Lake, George Thomas, 310.\\
Lalanne, L\'eon Louis Chr\'etien, 192.\\
Lam\'e, Gabriel, 343.\\
Landau, Edmund Georg Hermann, 578.\\
Laplace, Pierre Simon, marquis de, 346.\\
Large prime numbers, 14, 276, 374--378, 388--394, 397, 432, 480.\\
Lattice, 93.\\
Lattice-point model of binary gcd algorithm, 330--338, 344.\\
Laughlin, Harry Hamilton, 264.\\
Lavaux, Michel, 104.\\
lcm: Least common multiple.\\
Leading coefficient of a polynomial, 399, 433, 435.\\
Leading digit, 179.\¬
\*distribution of, 239--249, 387.\\
Leading zeros, 206, 223--227.\\
Least common left multiple, 419.\\
Least common multiple, 17, 22, 276--277, 316--317, 320, 336, 464, 595.\\
Least remainder algorithm, 361.\\
Least significant digit, 179.\\
Lebesgue, Henri L\'eon, measure, 154, 159--161, 165, 350--352, 361.\\
Legendre, Adrien Marie, 309, 366, 380.\\
L\'eger, R., 552.\\
Lehman, Russell Sherman, 371, 388.\\
Lehmer, Derrick Henry, vi, 9--10, 45, 52, 142, 264, 328--329, 367, 374, 375, 378,
      	380, 391, 395, 397, 465, 607, 629.\\
Lehmer, Derrick Norman, 263, 612.\\
Lehmer, Emma Markovna Trotskaia, 374.\\
Leibniz (= Leibnitz), Gottfried Wilhelm, freiherr von, 184.\\
Lempel, Abraham, 530.\\
Leonardo Pisano, {\sl see}↔Fibonacci.\\
Leong, Benton Lau, 466.\\
Leslie, Sir John, 192.\\
Less than, definitely, 208, 218--219, 227--228.\\
Levene, Howard, 72.\\
LeVeque, William Judson, 359, 516.\\
Levin, Leonid Anatol'evich, 164.\\
L\'evy, Paul, 346.\\
Lewis, John Gregg, 572.\\
Lewis, Peter Adrian Walter, 642.\\
Lewis, Theodore Gyle, 30.\\
li: Logarithmic integral function.\\
Liang, Franklin Mark, vii.\\
Linear congruential sequence, 9--11.\¬
\*choice of increment, 10, 15, 21, 84--85, 93,↔171.\¬
\*choice of modulus, 11--15, 170.\¬
\*choice of multiplier, 10, 15--25, 84--86, 98--105, 170--171.\¬
\*choice of seed, 15, 19, 137, 170.\¬
\*period length, 15--22.\¬
\*subsequence of, 10, 71.\\
Linear equations, 276.\¬
\*integer solution to, 326--327.\\
Linear iterative array, 297--300, 311.\\
Linear lists, 265, 266, 268.\\
Linear operators, 347--350, 361.\\
Linear recurrence, 26--29, 34--37, 332--333, 392--395, 568, 637.\\
Linearly independent vectors, 381, 425--427,↔610.\\
Linked memory, 265, 266, 268, 295, 400.\\
Linking automaton, 295, 301.\\
Linnainmaa, Seppo, 227, 229.\\
Liouville, Joseph, 363.\\
Lipton, Richard Jay, 478, 638.\\
Liquid measure, 183.\\
Littlewood, John Edensor, 366.\\
Local arithmetic, 184.\\
Locally nonrandom behavior, 43, 49--51, 145, 162.\\
Logarithm, 297.\¬
\*of power series, 514.\¬
\*of uniform deviate, 128.\\
Logarithmic integral, 614.\\
Logarithmic law of leading digits, 239--249,↔387.\\
Logical operations, 29--31, 177, 186, 305, 311--312, 322, 373--374, 434,
	439, 617, 629, 637.\\
Long division, 255--260, 263--268.\\
Loos, R\"udiger Georg Konrad, 619.\\
Lotti, Grazia, 482.\\
Lovelace, Ada Augusta, countess of, 173.\\
Loveland, Donald William, 165, 166, 169.\\
Lower bounds, {\sl see}↔Complexity of calculation.\\
Lubkin, Samuel, 310.\\
Lucas, Fran\c cois \'Edouard Anatole, 375, 391, 395, 397.\\
Luther, Herbert Adesla, 263.\\
\newletter % "M"
Maas, Robert Elton, 190.\\
MacLaren, Malcolm Donald, vi, 31, 44, 123, 525, 549.\\
MacMahon, Maj.\ Percy Alexander, 566.\\
MacMillan, Donald B., 210.\\
Macnaghten, Antony Martin, 642.\\
MacPherson, Robert D., 110.\\
MacSorley, Olin Lowe, 265.\\
Mahler, Kurt, 167.\\
Mallows, Colin Lingwood, 72.\\
Mandelbrot, Beno\A\i t B, 564.\\
MANIAC III, 227.\\
Manipulation of power series, 506--515.\\
Mantel, W., 526.\\
Mantissa, 199, {\sl see}↔Fraction part.\\
Mariage, Aim\'e, 185.\\
Mark II Calculator, 209.\\
Marsaglia, George, 22, 31, 44, 104, 110, 114, 117, 118, 123, 128, 129, 521, 525,↔552.\\
Martin, Monroe Harnish, 31, 35.\\
Martin-L\"of, Per, 163, 166.\\
{\sl Math.\ Comp.: Mathematics of Computation}, a journal published by the
	American Mathematical Society.\\
Matrix: Rectangular array.\¬
\*characteristic polynomial, 480.\¬
\*determinant, 338, 358, 415, 416, 479--480, 482, 496.\¬
\*greatest common right divisor, 419.\¬
\*inverse, 95--96, 314, 482, 657.\¬
\*multiplication, 481--482, 487--488, 502--505, 641.\¬
\*null space, 425--427, 625.\¬
\*permanent, 480, 497.\¬
\*rank, 425--427, 488, 496, 502, 625.\¬
\*semidefinite, 551.\¬
\*singular, 112, 494--495, 501.\¬
\*triangularization, 425--427, 621, 625.\\
Matrix (Bush), Dr.\ Irving Joshua, 38.\\
Matthew, Saint, 668.\\
Matula, David William, 194, 195, 312, 315--316, 363.\\
Maximum-of-$t$ test, 49, 51, 57, 68, 74, 117, 151, 167.\\
Maya Indians, 180.\\
McClellan, Michael Terence, 276.\\
McCracken, Daniel Delbert, 210.\\
McKendrick, A. G., 72.\\
Mean, evaluation of, 216, 229.\\
Measure, units of, 182--185, 193, 310.\\
Measure theory, 154, 159--161, 165, 350--352, 361.\\
Mediant rounding, 314--315, 363--364.\\
Mendelsohn, Nathan Saul, 195.\\
Mend\`es France, Michel, 602.\\
Mental arithmetic, 279.\\
Mersenne, Marin, 375, 389, 391.\¬
\*primes, 13, 391--395, 397.\\
Mertens, Franz Carl Joseph, 595.\\
{\:L opqrstuq}, 689.\\ % "METAFONT" in 8pt size
Metrology, 183--185.\\
Metropolis, Nicholas Constantine, 4, 225, 227, 310.\\
Metze, Gernot, 265.\\
Meyer, Albert Ronald da Silva, 301.\\
Middle-square method, 3--5, 7--8, 26, 518.\\
Mignotte, Maurice, 627.\\
Mikusi\'nski, Jan, 363.\\
Miller, Gary Lee, 379, 380.\\
Miller, Jeffrey Charles Percy, 507, 637.\\
Miller, Webb Colby, 466.\\
Milne-\hskip-.1em Thompson, Louis Melville, 487.\\
Minimizing a quadratic form, 94--98, 105, 111--112.\\
Ministep, 452.\\
Minkowski, Hermann, 544.\\
Minus zero, 186--187, 230, 234, 253, 590.\\
Mitchell, Gerard Joseph Francis Xavier, 26,↔30.\\
	\open0=v2inx.tmp
{\tt MIX} computer, vi, 186-187, 193,
	\send0{\def\mixpage{\count1}}350, 395,↔612.\¬
\*binary version, 186, 322--323, 373--374.\¬
\*floating point attachment, 199, 208--209, 211--212, 498.\\
Mixed congruential method, 10, {\sl see}↔Linear congruential sequence.\\
Mixed-radix number systems, 64, 183, 192--196, 274--275, 277, 486.\¬
\*addition, 193, 266, 589.\¬
\*balanced, 100, 586.\¬
\*comparison, 274--275.\¬
\*counting in, 99--100.\¬
\*multiplication and division, 193, 589.\¬
\*radix conversion, 309--310.\\
Mixture of distribution functions, 118--119, 133--134.\\
M\"obius, August Ferdinand, function, 337, 361, 437, 440.\¬
\*inversion formula, 437, 604.\\
mod, 212, 305, 402, 521, 586, 666.\\
mod $m$ arithmetic,\⊗
\*addition, 11, 14--15, 171, 187, 271--272.\¬
\*division, 25 (exercise↔7), 277, 337, 427--428, 480.\¬
\*halving, 277.\¬
\*multiplication, 11--15, 272, 614.\¬
\*on polynomial coefficients, 400--402.\¬
\*square root, 389, 437, 615.\¬
\*subtraction, 15, 171, 271--272.\\
Model V, 209.\\
Modular arithmetic, 268--278, 287--290, 434--436, 440, 480.\\
Modulus in a linear congruential sequence, 9--15, 170.\\
Moenck, Robert Thomas, 429, 486.\\
M\o ller, Ole, 227.\\
Monahan, John Francis, 125--126.\\
Monic polynomial, 399, 401, 402, 405, 436,↔500.\\
Monier, Louis, 396, 613.\\
Monomial, evaluation of, 465--466.\\
Monte Carlo, 2, 53, 110, 173.\¬
\*method for factoring, 369--371, 377, 394,↔396.\\
Moore, Donald Philip, 26, 30.\\
Moore, Ramon Edgar, 227.\\
Morris, Robert, 570.\\
Morrison, Michael Allan, 380, 384.\\
Morse, Harrison Reed, III, 176.\\
Morse, Samual Finley Breese, code, 361.\\
Moses, Joel, 435--436.\\
Moses, Lincoln Ellsworth, 140.\\
Most significant digit, 179.\\
Motzkin, Theodor Samuel, 363, 471, 475, 476, 478, 500, 501.\\
Muller, Mervin Edgar, vi, 117, 137.\\
Multiple, 403.\\
Multiple-precision arithmetic, 186, 250--301, 309, 327--330, 339, 400.\¬
\*addition, 250--252, 262--263, 265--268.\¬
\*comparison, 266.\¬
\*division, 255--261, 263--268, 295--297.\¬
\*greatest common divisor, 327--330, 339.\¬
\*multiplication, 253--255, 266--267, 278--301, 443.\¬
\*radix conversion, 309, 311.\¬
\*subtraction, 250--253, 265--268.\¬
\*table of constants, 659--660.\\
Multiplication, 178, 189, 191, 197, 250--251, 253--255, 266--267, 278--301.\¬
\*complex, 189, 468, 487, 501.\¬
\*double-precision, 234--237, 278--279.\¬
\*fast (asymptotically), 278--301.\¬
\*floating point, 204, 207, 208, 215--216, 224, 226--230, 234--235, 237, 248--249.\¬
\*fractions, 266, 313, 315.\¬
\*matrix, 481--482, 487--488, 502--505, 641.\¬
\*mixed-radix, 193, 589.\¬
\*mod $m$, 11--15, 272, 614.\¬
\*mod $u(x)$, 428.\¬
\*modular, 269--272.\¬
\*multiple-precision, 253--255, 266--267, 278--301, 443.\¬
\*polynomial, 399--400, 489--494, 503, 652.\¬
\*power series, 506.\\
Multiplicative congruential method, 10, 18--21, 105.\\
Multiplier in a linear congruential sequence, 9--10,
	15--25, 84--86, 98--105, 170--171.\\
Multiset, 454, 464, 636.\\
Multivariate polynomial, 399--400, 403, 418--419, 436, 438--439, 479--505.\\
Munro, James Ian, 496, 647.\\
Musinski, Jean Elisabeth, Abramson, 489.\\
Musical notation, 182.\\
Musser, David Rea, 264, 434, 436.\\
\newletter % "N"
Nadler, Morton, 268.\\
Nance, Richard E., 173.\\
Nandi, Salil Kumar, 264.\\
Napier, John, baron of Marchiston, 178,↔184.\\
Needham, Joseph, 271.\\
Negabinary number system, 188--189, 193--194, 196, 311.\\
Negacyclic convolution, 503.\\
Negadecimal number system, 188, 194.\\
Negative binomial distribution, 135.\\
Negative digits, 190--197, 638.\\
Negative numbers, representation of, 186--197.\\
Negative radix, 188--189, 193--194, 196, 311.\\
Neighborhood of a floating point number, 218.\\
Neugebauer, Otto Eduard, 180, 209.\\
Newcomb, Simon, 239.\\
Newman, Donald Joseph, 638.\\
Newton, Sir Isaac, 431, 467, 640.\¬
\*interpolation formula, 485--486, 498.\¬
\*method for rootfinding, 264, 295, 510,↔656.\\
Nickel, Laura Ann, 391.\\
Niederreiter, Harald G\"unther, 104, 105, 109, 110, 113, 164, 548.\\
Nijenhuis, Albert, 140.\\
Nines, casting out, 273, 287, 307.\\
Nines' complement notation, 187, 194.\\
Niven, Ivan Morton, 149.\\
Noll, Curt Landon, 391.\\
Nonary (radix 9) number system, 183, 591.\\
Noncommutative multiplication, 418--419, 481, 487--496, 501--505.\\
Nonnegative: Zero or positive.\\
Normal deviates: Random numbers with the normal distribution, 117--127.\¬
\*dependent, 127, 134.\\
Normal distribution, 54, 71, 117--127, 129, 130, 134--135, 368.\\
Normal evaluation scheme, 487, 650--651.\\
Normal number, 164.\\
Normalization of floating point numbers, 199--208, 211--212, 223, 227, 233, 239,↔573.\\
Norton, Karl Kenneth, 367.\\
NP complete problem, 550, 639.\\
Null space of a matrix, 425--427, 625.\\
Number sentences, 562.\\
Number system: A language for representing numbers.\¬
\*balanced decimal, 195.\¬
\*balanced mixed-radix, 100, 586.\¬
\*balanced ternary, 190--193, 211, 268, 336.\¬
\*binary (radix 2) 179, 182--186, 400, 441,↔464.\¬
\*binomial, 193.\¬
\*complex, 189--190, 193--194, 196, 268,↔401.\¬
\*decimal (= denary, radix ten), 181--183, 194--195, 359.\¬
\*duodecimal (radix twelve), 183.\¬
\*factorial, 64, 192.\¬
\*Fibonacci, 193.\¬
\*floating point, 198--199, 206, 223, 225,↔231.\¬
\*hexadecimal (radix sixteen), 179, 184--185, 593.\¬
\*mixed-radix, 64, 100, 183, 192--196, 274--275, 277, 309--310, 486, 586.\¬
\*modular, 268--271.\¬
\*negabinary (radix $-2$), 188--189, 193--194, 196, 311.\¬
\*negadecimal, 188, 194.\¬
\*nonary (radix 9), 183, 591.\¬
\*octal (= octonary = octonal, radix 8), 178, 183--186, 188, 194, 306--308, 462.\¬
\*$p$-adic, 197, 562, 587, 628.\¬
\*phi, 193.\¬
\*positional, 144--145, 159--160, 164, 179--197, 302--312.\¬
\*primitive tribal, 179, 182.\¬
\*quater-imaginary (radix $2i\mskip 1mu$), 189, 193--194, 268.\¬
\*quaternary (radix 4), 179, 183.\¬
\*quinary (radix 5), 179, 183, 197.\¬
\*rational, 313--316, 401.\¬
\*regular continued fraction, 330, 341--342, 352--353, 358--363.\¬
\*reversing binary, 196.\¬
\*revolving binary, 196.\¬
\*sedecimal (= hexadecimal), 179, 184--185, 593.\¬
\*senary (radix 6), 183.\¬
\*senidenary (= hexadecimal), 179, 184--185, 593.\¬
\*septenary (radix 7), 183.\¬
\*sexagesimal (radix sixty), 180--183, 209,↔309.\¬
\*slash, 314--315, 363--364.\¬
\*ternary (radix 3), 179, 183, 190--193, 197, 211, 268, 311, 336.\¬
\*vigesimal (radix twenty), 180.\\
Nussbaumer, Henri Jean, 503, 651.\\
Nystrom, John William, 184--185.\\
\newletter % "O"
$O$-notation: $O\biglp f(n)\bigrp$ denotes a quantity whose magnitude is less than
	some constant times↔$f(n)$, for all large↔$n$.\\
Oakford, Robert Vernon, 140.\\
Octal (radix 8) number system, 178, 183--186, 188, 194, 306--308, 462.\\
Odd-even method, 124--125, 134.\\
Odd polynomial, 496.\\
Odlyzko, Andrew Michael, 565.\\
{\tt OFLO}, 202.\\
Olivos Aravena, Jorge Augusto Octavio, 466.\\
On-line algorithm, 506--510, 657.\\
Ones' complement notation, 187, 194, 261, 262, 264, 272, 391.\\
Operands: Quantities that are operated on; e.g., $u$ and $v$ in the calculation of $u+v$.\\
Optimum methods of computation, {\sl see}↔Complexity.\\
Order of $a$ modulo $m$, 19--22, 375--376.\\
Order of an element in a field, 438.\\
Order-of-magnitude zero, 224.\\
Oriented tree, 444--446, 463, 530, 567.\\
Ostrowski, Alexander Markus, 475.\\
Oughtred, William, 209, 309.\\
Overflow, 11--12, 202, 226, 237, 252--253, 277, 315, 522.\¬
\*exponent, 201, 203, 206, 211, 216, 227--228, 233.\¬
\*fraction, 201, 239, 249.\¬
\*rounding, 201, 203, 204, 207, 208, 211--212.\\
Overstreet, Claude, Jr., 173.\\
Owen, John, 1.\\
Owings, James Claggett, Jr., 166.\\
\newletter % "P"
$p$-adic numbers, 197, 562, 587, 628.\\
Pad\'e, Henri Eug\`ene, 515.\\
Palindrome, 398, 617 (exercise↔2).\\
Palmer, John Franklin, 206.\\
Pan, Viktor \t Iakovlevich, 471, 473, 478, 482, 488, 498, 501, 503, 505,
	641, 644, 647, 654, 655.\\
Papadimitriou, Christos Harilaos, 639.\\
Pappus of Alexandria, 209.\\
Parallel computation, 270, 301, 469, 484.\\
Parameter step, 475, 500.\\
Pardo, {\sl see}↔Trabb Pardo.\\
Parlett, Beresford, 178.\\
Parry, William, 193.\\
Partial fraction expansion, 81, 492, 628.\\
Partial ordering, 636.\\
Partial quotients, 83, 342.\¬
\*distribution of, 345--353, 615--616.\\
Partition test, 62, 72, 151.\\
Pascal, Blaise, 183.\\
Paterson, Michael Stewart, 301, 501.\\
Patience, 174.\\
Paul, Nicholas John, 123.\\
Pawlak, Zdzis\l law, 188, 268.\\
Payafar, M., 627.\\
Payne, William Harris, 30.\\
Paz, Azaria, 479.\\
Peano, Giuseppe, 185.\\
Pearson, Karl, 52--54.\\
Pease, Marshall Carleton, III, 642.\\
Peirce, Charles Santiago Sanders, 363, 516,↔607.\\
Penk, Michael Alexander, 599.\\
Penney, Walter Francis, 189.\\
Percentage point, 41, 43, 48, 69--70, 368.\\
Perfect numbers, 389.\\
Perfect square, 372.\\
Period in a sequence, 7--9.\¬
\*length of, 4, 7--8, 15--22, 34--36, 392--393.\\
Periodic continued fraction, 359, 398.\\
Permanent, 480, 497.\\
Permutation: Ordered arrangement of a multiset.\¬
\*encoding, 64, 75, 139.\¬
\*random, 139--141, 369, 441, 632.\\
Permutation test, 64, 75, 76, 147.\\
Perron, Oskar, 339.\\
Persian mathematics, 181--182, 265, 309,↔443.\\
Pervushin, Rev.\ Ivan Mikheevich, 391.\\
Peters, Johann (= Jean) Theodor, 661.\\
Pfeiffer, John Edward, 176.\\
Phalen, Harold Romaine, 184.\\
Phi ($\phi$), 342, 343, 496, 659--660.\¬
\*number system, 193.\\
Phillips, Ernest William, 185.\\
Pi ($π$), 38, 144--145, 152, 154, 182, 184, 193, 268, 342, 659--660.\\
Pingala \'Ach\'arya, 441.\\
Pippenger, Nicholas John, 639.\\
Places, 250.\\
Planck, Max Karl Ernst Ludwig, constant, 198, 211, 223, 225--226.\\
Plass, Michael Frederick, 614.\\
Playwriting, 174--176.\\
Pointer machine, 295, 301.\\
Poisson, Sim\'eon Denis, distribution, 53, 132--133, 135--136, 517.\\
Poker test, 62, 72, 151.\\
Polar coordinates, 54, 57, 118.\\
Polar method, 117--118, 120, 130--131.\\
Pollard, John Michael, 369, 385, 396, 608,↔652.\\
Polynomial, 399--401.\¬
\*addition, 399--401.\¬
\*arithmetic modulo $m$, 34--35, 400--401,↔444.\¬
\*characteristic, 480.\¬
\*content of, 405--406.\¬
\*degree of, 399, 401, 410.\¬
\*derivative of, 421, 470, 631.\¬
\*discriminant of, 619, 628, 632.\¬
\*division, 401--420, 468--469, 515.\¬
\*evaluation, 466--505, 588 (exercise↔8).\¬
\*factorization, 420--441.\¬
\*over a field, 401--403, 405, 417, 420--431, 436--441.\¬
\*greatest common divisor, 405--420, 434--436, 440.\¬
\*interpolation, 281--282, 484--486, 490, 492, 498, 641.\¬
\*irreducible, 403, 417, 421, 437--441.\¬
\*leading coefficient of, 399, 433, 435.\¬
\*monic, 399, 401, 402, 405, 436, 500.\¬
\*multiplication, 399--400, 489--494, 503,↔652.\¬
\*multivariate, 399--400, 403, 418--419, 436, 438--439, 479--505.\¬
\*primitive, 404, 417.\¬
\*primitive modulo $p$, 28--29, 404.\¬
\*primitive part, 404--406.\¬
\*random, 417, 430, 436--437, 439, 441.\¬
\*remainder sequence, 408--418, 420, 435--436, 657.\¬
\*resultant, 415, 619.\¬
\*roots, 22, 416, 418, 420, 464, 474--475,↔499.\¬
\*squarefree, 421, 436, 440.\¬
\*string, 418--419.\¬
\*subtraction, 399--401.\¬
\*over a unique factorization domain, 403--420, 431--441.\\
Polynomial chains, 475--479, 499--501.\\
Pope, David Alexander, 263.\\
Popper, Karl Raimund, 166.\\
Portable random number generator, 171--173.\\
Porter, J. W., 356--357.\\
Positional representation of numbers, 144--145, 159--160, 164, 179--197, 302--312.\\
Positive definite quadratic form, 94, 111.\\
Positive semidefinite matrix, 551.\\
Potency, 22--25, 50, 71, 76, 78, 88.\\
Power, raising to a, {\sl see}↔Exponentiation.\¬
\*factorial, 281--282, 497, 597, 664.\\
Power series: A sum of the form $\sum↓{k≥0}a↓kz↑k$, {\sl see}↔Generating function.\¬
\*manipulation of, 506--515.\\
Power tree, 444--445, 462--463.\\
Powers, Don M., 296.\\
Powers, evaluation of, 441--466.\\
Powers, Raymond E., 380, 391.\\
pp: Primitive part, 404--406.\\
Pr, 143, 145, 162, 166--169, 242, 249, 453.\\
Pratt, Vaughan Ronald, 339, 395, 441.\\
Precision: The number of digits in a representation.\¬
\*double, 230--237, 263--264, 278--279.\¬
\*quadruple, 237.\¬
\*single: fitting in one computer word, 199.\¬
\*unlimited, 265, 268, 314.\\
Preconditioning, {\sl see}↔Adaptation.\\
Primality tests, 364, 374--380, 391--398.\\
Prime element in a unique factorization domain, 403.\\
Prime number: Integer greater than unity having no proper divisors,
	316--317, 353, 364, 615.\¬
\*distribution, 366--369, 395--396, 615, 632--633.\¬
\*factorization into, 12--13, 317, 353, 364--398, 464.\¬
\*large, 14, 276, 374--378, 388--394, 397, 432, 480.\¬
\*Mersenne, 391--395, 397.\¬
\*theorem, 366, 615.\¬
\*useful, 276, 390, 391, 614, 652.\¬
\*verifying primality, 364, 374--380, 391--398.\\
Primitive element modulo $m$, 19--22.\\
Primitive notations for numbers, 179, 182.\\
Primitive part of a polynomial, 404--406.\\
Primitive polynomial, 404, 417.\\
Primitive polynomial modulo $p$, 28--29, 404.\\
Primitive recursive function, 159.\\
Primitive root: A primitive element modulo↔$p$ or in a finite field, 19--22,
	437, 438.\\
Probabilistic algorithms, 2, 379--380, 385--386, 396--397, 428--430, 439, 630.\\
Probability: Ratio of occurrence, 142, 165.\¬
\*over the integers, 143, 145, 162, 166--169, 242, 249, 453.\\
Probert, Robert Lorne, 641.\\
Programming languages, 206.\\
Pronouncing hexadecimal numbers, 185.\\
Proof of algorithms, 265, 266, 319--320.\\
Proofs, constructive versus nonconstructive, 270, 273--274,↔585.\\
Proper factor, {\sl see}↔Divisor.\\
Proth, F. (or E.), 614.\\
Pseudo-division of polynomials, 407, 416.\\
Pseudo-random sequence, 3.\\
Ptolem\ae us (= Ptolemy), Claudius, 181.\\
Public key cryptography, 388--389.\\
Purdom, Paul Walton, Jr., 519.\\
\newletter % "Q"
Quadratic congruential sequence, 25--26, 34.\\
Quadratic forms, 94, 385, 503.\¬
\*minimizing, over the integers, 94--98, 105, 111--112.\\
Quadratic irrationality, 342, 359, 380--382,↔398.\\
Quadratic reciprocity law, 377, 394, 396,↔614.\\
Quadratic residues, 397, 638.\\
Quadruple-precision arithmetic, 237.\\
Quandalle, Philippe, 651.\\
Quasi-random numbers, 3, 173.\\
Quater-imaginary number system, 189, 193--194, 268.\\
Quaternary number system, 179, 183.\\
Quick, Jonathan Horatio, 74.\\
Quinary number system, 179, 183, 197.\\
Quotient: $\lfloor u/v\rfloor$, 250--251, {\sl see}↔Division.\¬
\*of polynomials, 402--404, 407, 416.\¬
\*partial, 83, 342, 345--353, 615--616.\¬
\*trial, 255--260, 263--264, 266--267.\\
\newletter % "R"
Rabin, Michael Oser, 380, 389, 396, 397,↔430.\\
Rabinowitz, Philip, 264.\\
Rademacher, Hans, 86.\\
Radioactive decay, 6, 128, 132.\\
Radix: Base of positional notation, 179.\¬
\*complex, 189--190, 193--194, 268.\¬
\*irrational, 193.\¬
\*mixed, 64, 99--100, 183, 192--196, 266, 274--275, 309--310, 486.\¬
\*negative, 188--189, 193--194, 196, 311.\\
Radix conversion, 184, 188, 189, 191, 193--194, 250, 302--312, 467, 470.\¬
\*floating point, 309--312.\¬
\*multiple-precision, 309, 311.\\
Radix point, 9, 179, 182, 187--188, 192--193, 198, 302.\\
Raimi, Ralph Alexis, 242, 247.\\
Raleigh, Sir Walter, 183.\\
Rall, Louis Baker, 225.\\
	\def\overdot#1{\save6\hbox{#1}\hbox to 1wd6{\hfil\raise1.2ex\hbox{.}\hfil
	\hskip-1wd6\box6}} % works only for character of height xheight
R\=am\=anujan, Sr\=\i niv\=asa Aiya\overdot ng\=ar, 613.\\
Ramaswami, Vammi, 367.\\
Ramshaw, Lyle Harold, 157.\\
RAND Corporation, 2--3.\\
Randell, Brian, 186, 209.\\
Random bit, 11, 29--31, 35--36, 45, 114--115,↔133.\\
Random combination, 136--141.\\
Random direction, 130--131.\\
Random function, 4--8, 369.\\
Random integer,\⊗
\*in a bounded set, 114--115, 171.\¬
\*among all positive integers, 143, 242, 249, 439, 453.\\
Random mapping, 4--8, 369.\\
Random numbers, 1--177.\¬
\*generating nonuniform deviates, 114--136.\¬
\*generating uniform deviates, 9--37, 170--173.\¬
\*machines for generating, 2--3, 387.\¬
\*quasi-, 3, 173.\¬
\*summary, 170--173.\¬
\*tables, 2--3, 152.\¬
\*testing, 38--113, {\sl see}↔Testing.\¬
\*using, 1--2, 114--141, 615, {\sl see↔also}↔Probabilistic algorithms.\\
Random permutation, 139--141, 369, 441,↔632.\\
Random point, in a circle, 117--118.\¬
\*in a sphere, 131.\¬
\*on an ellipsoid, 136.\¬
\*on a sphere, 130--131.\\
Random polynomial, 417, 430, 436--437, 439, 441.\\
Random random-number generator, 4--8,↔25.\\
Random sample, 136--141.\\
Random sequence, meaning of, 2, 142--169.\¬
\*finite, 145, 161--164.\\
Random waiting time, 114.\\
Randomness, definitions of, 142--169.\¬
\*improving, 25, 31--34, 37.\¬
\*testing for, {\sl see}↔Testing.\\
{\tt RANDU}, 25, 104, 173, 525.\\
Range arithmetic, 212, 225--227, 230, 570.\\
Rank, of apparition, 393.\¬
\*of a matrix, 425--427, 488, 496, 502, 625.\¬
\*of a tensor, 488--489, 494--496, 501--505.\\
Rapoport, Anatol, 519.\\
Ratio method, 125--128, 135.\\
Rational arithmetic, 68, 313--316, 409, 506--507.\\
Rational functions, 401, 479, 500.\¬
\*approximation and interpolation, 420,↔515.\\
Rational number, 313, 401, 439.\¬
\*approximation, 314--316, 363--364.\¬
\*positional representation, 195, 311, 359.\\
Real numbers, 401.\\
Real time, 270.\\
Realization of a tensor, 489.\\
Reciprocal, 264, 295--297, 403.\¬
\*floating point, 228.\¬
\*mod $m$, 25, 427, 437, 595, 599.\\
Reciprocal differences, 487.\\
Reciprocity laws, 79, 86, 377, 394, 396, 614.\\
Recorde, Robert, xi, 265.\\
Rectangle-wedge-tail method, 118--123, 134.\\
Rectangular distribution, {\sl see}↔Uniform distribution.\\
Recurrence relations, 9, 25--29, 33--37, 246--247, 279, 280, 285--286, 288, 295,
	296--297, 300, 332--333, 392--395, 481--482, 506, 507, 519, 568, 597, 630,
	637, 654, 655.\\
Recursive method, 237, 279, 283--285, 287, 295, 400, 481--482, 632, 652--653, 658.\\
Reeds, James Alexander, III, 561.\\
Rees, David, 36, 163.\\
Regular continued fraction, 330, 341--342, 352--353, 358--363.\\
Reiser, John Fredrick, vii, 28, 36, 227.\\
Reitwiesner, George Walter, 265.\\
Rejection method, 120--123, 129, 134--135,↔553.\\
Relative error, 206, 213, 216--217, 237, 240.\\
Relatively prime: Having no common prime factors, 11, 313, 324, 404, 417.\\
Remainder: Dividend minus quotient times divisor, 250--251, 256, 402, 407, 416, 515,
	{\sl see↔also}↔mod.\\
Replicative law, 86.\\
Representation of numbers, {\sl see}↔Number system.\\
Representation of trees, 463, 530, 555, 634.\\
Representation of $∞$, 209, 230, 315, 593.\\
Reservoir sampling, 138--140.\\
Residue arithmetic, 269, {\sl see}↔Modular arithmetic.\\
Result set, 475--476, 499.\\
Resultant of polynomials, 415, 619.\\
Revah, Ludmila, 647.\\
Reverse of a polynomial, 416, 434, 436, 618,↔657.\\
Reversing binary number system, 196.\\
Reversion of power series, 508--511, 514.\\
Revolving binary number system, 196.\\
Rezucha, Ivan, 137.\\
Rhind papyrus, 443.\\
Rho method, {\sl see}↔Monte Carlo method for factoring.\\
Rieger, Georg Johann, 605.\\
Riemann, Georg Friedrich Bernhard, 78, 366, 396.\¬
\*hypothesis, 366--367, 380, 632.\¬
\*integration, 146--147, 244.\\
Ring with identity, commutative, 399, 401, 407.\\
Riordan, John, 520.\\
Rivest, Ronald Linn, 386, 648.\\
Robber, 174--176.\\
Robinson, Donald Wilford, 528.\\
Robinson, Julia Bowman, 616.\\
Robinson, Raphael Mitchel, 397, 614, 652.\par
	\open0←tmp.tmp \input v2inx.tmp \\	% this defines \mixpage
Roman numerals, 179, 193, \mixpage.\\
Romani, Francesco, 482.\\
Roof, Raymond Bradley, 110.\\
Roots of a polynomial, 22, 416, 418, 420, 464, 474--475, 499.\\
Roots of unity, {\sl see}↔Cyclotomic polynomials, Exponential sums.\\
Ross, Douglas Taylor, 176.\\
Rotenberg, Aubey, 10, 45.\\
Roulette, 9, 53, 240.\\
Rounding, 201, 203, 206, 207, 212, 215--216, 219, 221--222, 226, 314--316, 363--364.\\
Rounding overflow, 201, 203, 204, 207, 208, 211--212.\\
Rozier, Charles P., 308.\\
RSA box, 386--389, 397.\\
Rudolff, Christof, 182.\\
Rumely, Robert Scott, 380.\\
Run test, 61, 65--68, 72, 74, 88, 151, 167.\\
Runge, Carl David Tolm\'e, 642.\\
Runs above (or below) the mean, 61.\\
Russian peasant method, 443.\\
Ruzsa, Imre Zolt\'an, 197.\\
Ryser, Herbert John, 497, 641.\\
\newletter % "S"
Sachau, Karl Eduard, 441.\\
Sahni, Sartaj, 58.\\
Saidan, Ahmad Salim, 182, 441.\\
Salamin, Eugene, 268.\\
Samelson, Klaus, 226--227, 310.\\
Samet, Paul Alexander, 304.\\
Sampling (without replacement), 1,↔136--141.\¬
\*weighted, 141.\\
Sands, Arthur David, 567.\\
Savage, John Edmund, 648.\\
Sawtooth function, 77, 86.\\
Saxe, James Benjamin, 136.\\
Scarborough, James Blaine, 226.\\
Schmid, Larry Philip, 71.\\
Schmidt, Erhard, orthogonalization process, 97, 620.\\
Schmidt, Wolfgang M., 169.\\
Schnorr, Claus-Peter, 166, 397, 478.\\
Scholz, Arnold, 459.\\
Schreyer, Helmut, 186.\\
Schroeppel, Richard Crabtree, 383, 384.\\
Schr\"oder, Ernst, 512.\¬
\*function, 512--513.\\
Schwartz, Jacob Theodore, 619.\\
Schwarz, \v Stefan, 430.\\
Sch\"onhage, Arnold, 276, 287--288, 290, 295, 300, 301, 311, 451, 465, 482, 592,
	598, 638, 655.\\
Secrest, Don, 265, 310.\\
Secret keys, 177, 386--389, 397, 486.\\
Secure communications, 386--389, 397.\\
Sedecimal number system, 186, {\sl see}↔Hexadecimal.\\
Sedgewick, Robert, 518.\\
Seed (starting value) in a linear congruential sequence, 9, 15, 19, 137, 170.\\
Seidenberg, Abraham, 182.\\
Selection sampling, 137--138, 140.\\
Selfridge, John Lewis, 378, 395.\\
Semigroup, 517.\\
Senidenary number system, 186, {\sl see}↔Hexadecimal.\\
Septenary (radix 7) number system, 183.\\
Serial correlation test, 70--72, 75, 78--85, 148, 168.\\
Serial test, 36, 60, 72, 73, 85--88, 91, 105--110, 113, 151.\\
Sethi, Ravi, 466.\\
SETUN, 192.\\
Sexagesimal number system, 180--183, 209,↔309.\\
Shakespeare, William, v.\\
Shallit, Jeffrey Outlaw, 363.\\
Shamir, Adi, 386, 398, 486.\\
Shanks, Daniel, 268, 360, 384, 385, 626.\\
Shannon, Claude Elwood, 195.\\
Shaw, Mary Margaret, 470, 479, 497.\\
Sheriff, 174--176.\\
Shift operators of \MIX, 322.\\
Shift register recurrence, 29--31, 35, 424.\\
Shirley, John William, 183.\\
Shuffling a random sequence, 31--35, 37.\\
Shuffling cards, 139--141.\\
Sibuya, Masaaki [\chin{24}\chin{25}\chin{26}\chin{27}], 128.\\
Sieve procedure, 373--374, 394.\\
Sieveking, Malte, 656.\\
Signatures, Digital, 388--389.\\
Signed-magnitude representation, 186--187, 193--194, 198, 232, 250.\\
Significant digits, 179, 213, 223.\\
Sikdar, Kripasindhu, 310.\\
Silver, Roland Lazarus, 654.\\
Simulation, 1.\\
Sine, 471.\\
Singh, Avadhesh Narayan, 441.\\
Singleton, Richard Collom, 642.\\
Sink vertex, 461.\\
Slash arithmetic, 314--316, 363--364.\\
{\tt SLB} (shift left AX binary), 322.\\
Slide rule, 209, 240.\\
Slowinski, David Allen, 391.\\
Small step, 447.\\
Smirnov, Nikola\u\i\ Vasil'evich, 54, 55.\\
Smith, David Eugene, 181, 182.\\
Smith, Henry John Stephen, 598.\\
Smith, J. E. Keith, 26.\\
Smith, Robert Leroy, 212.\\
Sobol', Il'ia Meerovich, 519.\\
Soden, Walter, 306.\\
Solitaire, 174.\\
Solovay, Robert Martin, 380, 396.\\
Sorted uniform deviates, 130, 132, 136.\\
Source vertex, 461.\\
Sowey, Eric Richard, 173.\\
Species of measure zero, 166.\\
Spectral test, 24, 29, 89--113, 170, 530.\¬
\*algorithm for, 98--101.\\
Sphere, $n$-dimensional, 54.\¬
\*random point on, 130--131.\¬
\*volume of, 101.\\
Spherical coordinates, 57.\\
SQRT box, 389, 397.\\
Square root, 117, 197, 268, 342, 359, 380--382, 389, 398, 464.\¬
\*modulo $p$, 437.\¬
\*power series, 507.\\
Squarefree polynomials, 421, 436, 440.\\
Squeeze method, 120--123, 129, 134--135,↔553.\\
{\tt SRB} (shift right AX binary), 322, 462.\\
Stability of polynomial evaluation, 467, 470, 471.\\
Stack: Linear list with last-in-first-out growth pattern, 283--285.\\
Standard deviation, evaluation of, 216, 229.\\
Stanley, Richard Peter, 558.\\
Star chain, 447, 453--457, 461, 463.\\
Star step, 447.\\
Stark, Richard Harlan, 210.\\
Starting value in a linear congruential sequence, 9, 15, 19, 137, 170.\\
Statistical tests, {\sl see}↔Testing.\\
Steele Jr., Guy Lewis, 589.\\
Stegun, Irene Anne, 41, 661.\\
Stein, Josef, 321.\\
Stein, Marvin Leonard, 263.\\
Stern, Moriz Abraham, 607.\\
Stern--Peirce tree, 363, 608.\\
Stevin, Simon, 182, 405.\\
Stibitz, George Robert, 186, 209.\\
Stirling, James,\⊗
\*approximation, 57, 517, 605, 636.\¬
\*numbers, 62, 63, 282, 519, 624, 665.\\
Stockmeyer, Larry Joseph, 301.\\
Stolarsky, Kenneth Barry, vi.\\
Stone, Harold Stuart, 210.\\
Stoppard, Tom, 60.\\
Storage modification machines, 295, 301.\\
Strassen, Volker, 290, 295, 300, 380, 396, 478, 481, 488, 503, 648.\\
Straus, Ernst Gabor, 363, 465.\\
String polynomials, 418--419.\\
Stroud, Arthur Howard, 265, 310.\\
Sturm, Jacob Karl Franz, 416, 420, 619.\\
Subbarao, Mathukumali Venkata, 449.\\
Subresultant algorithm, 410--418, 420, 436--436, 657.\\
Subsequence rule, 155--160, 162--163, 165--166, 169.\\
Subsequence tests, 65, 151.\\
Subtraction, 178, 191, 197, 250--253, 265--268.\¬
\*complex, 468.\¬
\*continued fractions, 602.\¬
\*floating point, 200--204, 214--216, 219--225, 230, 232--234, 238--239, 249.\¬
\*fractions, 313--315.\¬
\*mixed-radix, 193.\¬
\*mod $m$, 15, 171, 271--272.\¬
\*modular, 269, 277.\¬
\*multiple-precision, 250--253, 265--268.\¬
\*polynomial, 399--401.\¬
\*power series, 506.\\
Subtractive random number generation, 36, 171--173.\\
Sugunamma, Mantri, 449.\\
Sum of periodic sequences, 31, 35.\\
Summation by parts, 597.\\
Sun Ts\u u (= Wu) [\chin{28}\chin{29}], 265, 271.\\
Suokonautio, Vilho, 265.\\
sup, 532.\\
Svoboda, Anton\'\i n, 267, 276.\\
Swedenborg, Emanuel, 184.\\
Sweeney, Dura W., 238, 360.\\
Swinnerton-Dyer, Henry Peter Francis, 625.\\
S\'ykora, Ondrej, 641.\\
Sylvester, James Joseph, 415, 417.\\
Synthetic division, 402.\\
System/370, 14--15, 104.\\
Szab\'o, Nicholas Sigismund, 275, 276.\\
Szymanski, Thomas Gregory, 518.\\
\newletter % "T"
$t$-distribution, 130.\\
Tables of fundamental constants, 342, 584 (exercise↔36), 614, 659--662.\\
Tague, Berkley Arnold, 401.\\
Tail of a floating point number, 220.\\
Tail of the binomial distribution, 160.\\
Tail of the normal distribution, 122--123,↔134.\\
Takahasi, Hidetosi [\chin{14}\chin{18}\chin{30}\chin{31}], 275.\\
Tanaka, Richard Isamu [\chin{38}\chin{46}\chin{39}], 276.\\
Tangent, 360, 647.\\
Tannery, Jules, 226.\\
Taranto, Donald Howard, 310.\\
Tarski, Alfred, 502.\\
Taussky Todd, Olga, 104.\\
Tausworthe, Robert Clem, 30.\\
Taylor, Alfred Bower, 185.\\
Taylor, Brook, 470.\\
Television script, 174--176.\\
Ten's complement notation, 186--187, 194.\\
Tensor, 487--496, 501--505.\\
Terminating fractions, 311.\\
Ternary number system, 179, 183, 190--193, 197, 211, 268, 311, 336.\¬
\*balanced, 190--193, 211, 268, 336.\\
Testing for randomness, 38--113.\¬
\*{\sl a priori\/} tests, 75.\¬
\*chi-square test, 39--45, 50--54, 56--59.\¬
\*collision test, 68--70, 72--73, 151.\¬
\*coupon collector's test, 61--63, 74, 151,↔167.\¬
\*empirical tests, 59--75.\¬
\*equidistribution test, 59, 72.\¬
\*frequency test, 59, 72.\¬
\*gap test, 60--61, 72--73, 131, 151, 167.\¬
\*Kolmogorov--\hskip .1em Smirnov test, 45--52, 54--58, 59, 68.\¬
\*maximum-of-$t$ test, 49, 51, 57, 68, 74, 117, 151, 167.\¬
\*partition test, 62, 72, 151.\¬
\*permutation test, 64, 75, 76, 147.\¬
\*poker test, 62, 72, 151.\¬
\*run test, 61, 65--68, 72, 74, 88, 151, 167.\¬
\*serial correlation test, 70--72, 75, 78--85, 148, 168.\¬
\*serial test, 36, 60, 72, 73, 85--88, 91, 105--110, 113, 151.\¬
\*spectral test, 24, 29, 89--113, 170, 530.\¬
\*subsequence tests, 65, 151.\¬
\*theoretical tests, 75--113.\\
T\hskip-.1667em\lower.424ex\hbox{E}\hskip-.125em X, vii, 689.\\
Thacher, Henry Clarke, Jr., 510.\\
Theoretical tests for randomness, 75--113.\\
Thiele, Thorvald Nicolai, 487.\\
Thompson, John Eric Sidney, 180.\\
Thomson, William Ettrick, 3, 10, 21.\\
Thurber, Edward Gerrish, 451, 458, 459.\\
Tienari, Martti, 265.\\
Tingey, Fred Hollis, 55.\\
Tippett, Heonard Henry Caleb, 2.\\
Tobey, Robert George, 622.\\
Tocher, Keith Douglas, 553.\\
Toeplitz, Otto, 657.\\
Tonal system, 185.\\
Tonelli, Alberto, 626.\\
Toom, A. L., 280, 282, 284, 290.\\
Topological sorting, 461.\\
Torres y Quevedo, Leonardo de, 209.\\
Trabb Pardo, Luis Isidoro, 369, 611.\\
Trager, Barry Marshall, 631.\\
Trailing digit, 179.\\
Transcendental numbers, 363.\\
Transpose, 488, 664.\\
Traub, Joseph Frederick, 133, 335, 380, 410, 470, 479, 486, 497, 512--513, 514,
	515, 656.\\
Trees: Branching information structures.\¬
\*binary, 363, 555, 630.\¬
\*enumeration of, 639.\¬
\*oriented, 444--446, 463, 530, 567.\¬
\*representation of, 463, 530, 555, 634.\\
Trial quotient, 255--260, 263--264, 266--267.\\
Triangularization of matrices, 425--427, 621,↔625.\\
Trie, 630.\\
Trilinear representation of tensors, 503.\\
Triple-precision floating point, 237.\\
Trits, 190.\\
Tropfke, Johannes, 339.\\
Truncation: Suppression of trailing digits, 222, 293.\\
Tsu Chhung-Chih [\chin{32}\chin{33}\chin{34}], 181.\\
Tuckerman, Bryant, 391.\\
Tukey, John Wilder, 642.\\
Tung Yun Mei [\chin{35}\chin{45}\chin{36}], 689.\\
Tur\'an, Paul, 602.\\
Turing, Alan Mathison, 561.\¬
\*machine, 164, 480.\\
Twindragon, 190, 564.\\
Two's complement notation, 14--15, 187, 194, 197, 212, 261, 262.\\
\newletter % "U"
Ulam, Stanis\l law Marcin, 135.\\
Ulp, 217.\\
Ultimately periodic sequences, 7--8, 21, 359,↔369.\\
Underflow, exponent, 201, 203, 206, 211, 216, 227--228, 233.\¬
\*gradual, 206.\\
Ungar, Peter, 647.\\
Uniform deviates, 9--37, 116--117, 170--173.\\
Uniform distribution, 2, 9, 45, 47, 55, 114, 116--120, 133, 248.\\
Unique factorization domain, 403--405, 417.\\
Unit in a unique factorization domain, 403,↔417.\\
Unlimited precision, 265, 268, 314.\\
Unnormalized floating point arithmetic, 223--225, 227, 229, 310.\\
Useful primes, 276, 390, 391, 614, 652.\\
Uspensky, James Victor, 264.\\
\gdef\3{T} % This is supposed to come about 100-110 lines from the end
\varunit 9pt % the baselineskip we are using
\gdef\lastpagesize{30.5vu} % Will be height of columns on the final page
\newletter % "V"
Valach, Miroslav, 276.\\
Valiant, Leslie Gabriel, 480.\\
Vall\'ee Poussin, Charles Louis Xavier Joseph de la, 366.\\
Valtat, Raymond, 186.\\
van Ceulen, Ludolph, 182.\\
Van de Wiele, Jean-Paul, 478, 648.\\
van der Corput, Johannes Gualtherus, 157.\\
van der Waerden, Bartel Leendert, 180, 415, 499, 632.\\
van Leeuwen, Jan, 497, 647.\\
van Wijngaarden, Adriaan, 227.\\
Varga, Richard Steven, iv.\\
Vari, Thomas Michael, 642.\\
Variance-ratio distribution, 130.\\
Vaughan, Robert Charles, 433.\\
Veltkamp, Gerhard W., 573.\\
Vertex cover, 466.\\
Vicente Gon\c calves, Jos\'e, 627.\\
Vigesimal number system, 180.\\
Vi\`ete, Fran\c cois, 182.\\
Ville, Jean, 560.\\
Voltaire, Fran\c cois Marie Arouet de, 184.\\
von Fritz, Kurt, 318.\\
von Mangoldt, Hans Carl Friedrich, 613.\¬
\*function, 355, 361.\\
von Mises, Richard, edler, 142, 165, 475.\\
von Neumann, John, 1, 3, 26, 114, 120, 124, 135, 186, 210, 263, 310.\\
von Schelling, Hermann, 63.\\
von Schubert, Friedrich Theodor, 431.\\
\newletter % "W"
Wadel, Louis Burnett, 188.\\
Wadey, Walter Geoffrey, 210, 227.\\
Waiting time, 131.\\
Wakulicz, Andrzej, 188, 268.\\
Wald, Abraham, 157, 165.\\
Wales, Francis Herbert, 178, 186.\\
Walfisz, Arnold, 366.\\
Walker, Alastair J., 115, 122, 134, 555.\\
Walker, Andrew Morris, 71.\\
Wall, Donald Dines, 527.\\
Wall, Hubert Stanley, 339.\\
Wallace, Christopher S., 299.\\
Wallis, John, 182--183.\\
Walsh, Joseph Leonard, 483.\\
Wang, Paul Shyh-Horng, 436, 631.\\
Ward, Morgan, 528.\\
Waterman, Alan Gaisford, vii, 37, 104, 111, 139, 529.\\
Waterman, Michael Spencer, 608.\\
Watson, Eric John, 30.\\
Weather, 72.\\
Wedge-shaped distributions, 120--121.\\
Weigel, Erhard, 183.\\
Weighing problem, 192.\\
Weights and measures, 182--185, 193, 310.\\
Weinberger, Peter Jay, 380, 397, 632.\\
Welch, Lloyd Richard, 430.\\
Welch, Peter Dunbar, 642.\\
Welford, B. P., 216.\\
Westlake, Wilfred James, 31.\\
Weyl, Hermann, 168, 366, 592.\\
Wheeler, David John, 210.\\
White, Jon L, 589.\\
White sequence, 168.\\
Whiteside, Derek Thomas, 467.\\
Wilf, Herbert Saul, 140.\\
Wilkes, Maurice Vincent, 185, 210.\\
Wilkinson, James Hardy, 226, 480.\\
Williams, Hugh Cowie, 378, 397.\\
Williams, John Hayden, 519.\\
Williamson, Dorothy, 110.\\
Winograd, Shmuel, vii, 265, 299, 481, 482, 488, 490, 494, 495, 496, 502, 505, 641,
	646, 647, 654.\\
Wirsing, Eduard, 347, 350, 361.\\
{\tt WM1} (word size minus one), 15, 236, 253.\\
Wolf, Thomas H., 176.\\
Wolfowitz, Jacob, 67, 72.\\
Wong, Chak-Kuen [\chin{16}\chin1\chin{37}], 555.\\
Wood, William Wayne, 110.\\
Word size, 11, 14, 250, 261.\\
Wrench, John William, Jr., 268, 360, 661.\\
Wright, Edward Maitland, 369, 606.\\
Wunderlich, Marvin Charles, vii, 374, 378, 383--384.\\
Wynn, Peter, 339, 570.\\
Wynn-Williams, C. E., 186.\\
\newletter % "X"
{\tt XOR} (exclusive or), 29--30.\\
\newletter % "Y"
Yao, Andrew Chi-Chih [\chin{40}\chin{41}\chin{42}], 133, 299, 362, 465.\\
Yao, Foong Frances Chu [\chin{40}\chin{43}\chin{44}], 465.\\
Yates, Frank, 483, 654.\\
Yohe, James Michael, 569.\\
Yun, David Yuan-Yee [\chin{47}\chin{48}\chin{49}], 435--436, 440, 628, 631, 657.\\
\newletter % "Z"
Zacher, Hans-Joachim, 184.\\
Zaremba, Slanis\l law Krystyn, 110, 113, 315,↔548.\\
Zaring, Wilson Miles, 605.\\
Zassenhaus, Hans Julius, vi, 428, 430, 437, 625, 628.\\
Zeta function, 366--367, 396, 632.\\
Zierler, Neal, 28.\\
Zuckerman, Herbert Samuel, 149.\\
Zuse, Konrad, 186, 209, 211.\\
Zvonkin, Aleksandr Kalmanovich, 164.\\
\newletter % numbers and symbols
$\gamma$, 342, 360, 611, 629, 659--660, 666.\\
$π$, 38, 144--145, 152, 154, 182, 184, 193, 268, 342, 659--660.\\
$\phi$, 342, 343, 496, 659--660.\\
\newletter
\par\vskip 0pt plus 10pt minus 3pt\\  % gives extra glue for last column
$[\,0,1)$ sequence, 144.\\
\newletter
\par\vskip 0pt plus 10pt minus 3pt\\  % gives extra glue for last column
2-adic numbers, 197.\\
10-adic numbers, 587.\\
\newletter
\par\vskip 0pt plus 10pt minus 3pt\\  % gives extra glue for last column
$∞$, representation of, 209, 230, 315, 593.\\
$∞$-distributed sequence, 144--155, 164--168.\par
\endindex{Any accuracies or
inaccuracies in this index may be explained by the fact that it
was prepared with the help of a computer, but not blindly.
For additional definitions of
computer terminology, see Volume↔1 and the {\sl IFIP--ICC Vocabulary of Information
Processing} (Amsterdam: North-Holland Publishing Co., 1966).}
\end